
Find the integral \[\int\limits_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}}xdx=\]
A. \[-2\]
B. \[-1\]
C. \[0\]
D. \[2\]
Answer
217.8k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $[-1,1]$. So, we can go for an even-odd function integral. By applying $x=-x$ in the given function, we can find that the function is an even or odd function. According to the type of function, we can evaluate the integral.
Formula Used: Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution: Given integral is
\[I=\int\limits_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}}xdx\]
Consider the given function as
\[f(x)={{x}^{17}}{{\cos }^{4}}x\]
Substituting $x=-x$ in the given function, we get
\[\begin{align}
& f(-x)={{(-x)}^{17}}{{\left[ \cos (-x) \right]}^{4}} \\
& \text{ }=-{{x}^{17}}{{\cos }^{4}}x \\
& \text{ }=-f(x) \\
\end{align}\]
Thus, the given function is an odd function, we can use the formula
$\int\limits_{-a}^{a}{f(x)dx}=0$
Therefore, the given integral become
\[\int\limits_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}}xdx=0\]
Option ‘C’ is correct
Note: In this question, we have a trigonometric function in the integral. So, it is a little difficult to solve with a normal ILET integration method. Since the given integral has limits in the interval of $[-a, a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $x=-x$ in the function $f(x)$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Formula Used: Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution: Given integral is
\[I=\int\limits_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}}xdx\]
Consider the given function as
\[f(x)={{x}^{17}}{{\cos }^{4}}x\]
Substituting $x=-x$ in the given function, we get
\[\begin{align}
& f(-x)={{(-x)}^{17}}{{\left[ \cos (-x) \right]}^{4}} \\
& \text{ }=-{{x}^{17}}{{\cos }^{4}}x \\
& \text{ }=-f(x) \\
\end{align}\]
Thus, the given function is an odd function, we can use the formula
$\int\limits_{-a}^{a}{f(x)dx}=0$
Therefore, the given integral become
\[\int\limits_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}}xdx=0\]
Option ‘C’ is correct
Note: In this question, we have a trigonometric function in the integral. So, it is a little difficult to solve with a normal ILET integration method. Since the given integral has limits in the interval of $[-a, a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $x=-x$ in the function $f(x)$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Recently Updated Pages
JEE Advanced Physics Syllabus 2026 – PDF Download, Topic-Wise Weightage and Updates.

JEE Advanced Chemistry Syllabus 2026 - Free PDF Download

Sum of Squares - Formulas and FAQs

Difference Between Axiom and Theorem | Learn and Solve Questions

JEE Advanced Maths Syllabus 2026 (Released) – Download Free PDF

SRMJEEE Result 2024 (Out) Check all the Updates Here

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

