
Find how many numbers can be formed with the digits \[1,2,3,4,3,2,1\] so that the odd digits always occupy the odd places.
A. \[18\]
B. \[28\]
C. 6
D. \[27\]
Answer
162k+ views
Hint: First, find the number of odd and even numbers present in the given digits. Then, arrange the digits in even and odd places. In the end, find how many ways the digits can be arranged to get the required answer.
Formula Used: Permutation formula when repetition allowed: \[\dfrac{{n!}}{{{a_1}!{a_2}!....{a_n}!}}\]
Complete step by step solution: The given digits are \[1,2,3,4,3,2,1\].
Total number of digits: 7
Number of odd numbers: \[1,3,3,1\]: 4
Number of even numbers: \[2,4,2\]: 3
Since in the given digits 3 even numbers \[2,4,2\] are present. There are 3 even places.
And the digit 2 is repeated 2 times.
So, the number of ways of arranging the even digits at 3 places are: \[\dfrac{{3!}}{{2!}} = 3\]
Also, there are 4 even numbers \[1,3,3,1\] present and we must arrange them into 4 places.
But both numbers repeated 2 times.
So, the number of ways of arranging the odd digits at 4 places are: \[\dfrac{{4!}}{{2!2!}} = 6\]
Therefore, the number of words formed in which vowels occupy the even places are:
\[\dfrac{{3!}}{{2!}} \times \dfrac{{4!}}{{2!2!}} = 3 \times 6\]
\[ \Rightarrow \dfrac{{3!}}{{2!}} \times \dfrac{{4!}}{{2!2!}} = 18\]
Option ‘C’ is correct
Note: Permutation shows the number of possible arrangements of the objects when the order of the arrangement of the objects matters.
If some objects are repeated, then apply the formula of the permutation for the repetition.
Formula Used: Permutation formula when repetition allowed: \[\dfrac{{n!}}{{{a_1}!{a_2}!....{a_n}!}}\]
Complete step by step solution: The given digits are \[1,2,3,4,3,2,1\].
Total number of digits: 7
Number of odd numbers: \[1,3,3,1\]: 4
Number of even numbers: \[2,4,2\]: 3
Since in the given digits 3 even numbers \[2,4,2\] are present. There are 3 even places.
And the digit 2 is repeated 2 times.
So, the number of ways of arranging the even digits at 3 places are: \[\dfrac{{3!}}{{2!}} = 3\]
Also, there are 4 even numbers \[1,3,3,1\] present and we must arrange them into 4 places.
But both numbers repeated 2 times.
So, the number of ways of arranging the odd digits at 4 places are: \[\dfrac{{4!}}{{2!2!}} = 6\]
Therefore, the number of words formed in which vowels occupy the even places are:
\[\dfrac{{3!}}{{2!}} \times \dfrac{{4!}}{{2!2!}} = 3 \times 6\]
\[ \Rightarrow \dfrac{{3!}}{{2!}} \times \dfrac{{4!}}{{2!2!}} = 18\]
Option ‘C’ is correct
Note: Permutation shows the number of possible arrangements of the objects when the order of the arrangement of the objects matters.
If some objects are repeated, then apply the formula of the permutation for the repetition.
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced 2025 - Exam Dates, Eligibility and Registration

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
