
\[f \circ g\left( 9 \right) = 683\] Let \[f\] and \[g\] be functions from \[R\] to \[R\] defined as \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{7{x^2} + x - 8,}&{x \le 1}\\\begin{array}{l}4x + 5,\\8x + 3\end{array}&\begin{array}{l}1 < x \le 7\\x > 7\end{array}\end{array}} \right.\] , \[g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\left| x \right|,}&{x < - 3}\\\begin{array}{l}0,\\{x^2} + 4,\end{array}&\begin{array}{l} - 3 \le x < 2\\x \ge 2\end{array}\end{array}} \right.\]. Then which of the following option is true?
A. \[f \circ g\left( { - 3} \right) = 8\]
B. \[f \circ g\left( 9 \right) = 683\]
C. \[g \circ f\left( 0 \right) = - 8\]
D. \[g \circ f\left( 6 \right) = 427\]
Answer
162.9k+ views
Hint: Here, two function \[f\] and \[g\] are given. To check which option is true, solve each option by using the composition of the functions. For the first and the second options, first calculate \[g\left( x \right)\] for the corresponding numbers. Then, substitute the value of \[g\left( x \right)\] as the input of \[f\left( x \right)\] and solve it. Similarly, for the third and fourth options, first calculate \[f\left( x \right)\] for the corresponding numbers. Then, substitute the value of \[f\left( x \right)\] as the input of \[g\left( x \right)\] and solve it. In the end, verify the answers with the given options and get the required answer.
Formula Used: Composition of functions:
\[f \circ g\left( x \right) = f\left( {g\left( x \right)} \right)\]
\[g \circ f\left( x \right) = g\left( {f\left( x \right)} \right)\]
Complete step by step solution: Given:
The functions \[f\] and \[g\] from \[R\] to \[R\] are defined as \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{7{x^2} + x - 8,}&{x \le 1}\\\begin{array}{l}4x + 5,\\8x + 3\end{array}&\begin{array}{l}1 < x \le 7\\x > 7\end{array}\end{array}} \right.\] and \[g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\left| x \right|,}&{x < - 3}\\\begin{array}{l}0,\\{x^2} + 4,\end{array}&\begin{array}{l} - 3 \le x < 2\\x \ge 2\end{array}\end{array}} \right.\].
Let’s solve each option by using the rule of the composition of functions.
Option A) \[f \circ g\left( { - 3} \right) = 8\]
Apply the rule of the composition of functions.
\[f \circ g\left( { - 3} \right) = f\left( {g\left( { - 3} \right)} \right)\]
Here, first calculate the value of \[g\left( { - 3} \right)\].
From the given function \[g\left( x \right)\], we get \[g\left( { - 3} \right) = 0\].
So,
\[f \circ g\left( { - 3} \right) = f\left( 0 \right)\]
Now from the given function \[f\left( x \right)\], we get
\[f \circ g\left( { - 3} \right) = 7{\left( 0 \right)^2} + \left( 0 \right) - 8\]
\[ \Rightarrow f \circ g\left( { - 3} \right) = 0 + 0 - 8\]
\[ \Rightarrow f \circ g\left( { - 3} \right) = - 8\]
Thus, option A is incorrect.
Option B) \[f \circ g\left( 9 \right) = 683\]
Apply the rule of the composition of functions.
\[f \circ g\left( 9 \right) = f\left( {g\left( 9 \right)} \right)\]
Here, first calculate the value of \[g\left( 9 \right)\].
From the given function \[g\left( x \right)\], we get \[g\left( 9 \right) = {\left( 9 \right)^2} + 4\].
So,
\[f \circ g\left( 9 \right) = f\left( {{{\left( 9 \right)}^2} + 4} \right)\]
\[ \Rightarrow f \circ g\left( 9 \right) = f\left( {85} \right)\]
Now from the given function \[f\left( x \right)\], we get
\[f \circ g\left( 9 \right) = 8\left( {85} \right) + 3\]
\[ \Rightarrow f \circ g\left( 9 \right) = 680 + 3\]
\[ \Rightarrow f \circ g\left( 9 \right) = 683\]
Thus, option B is correct.
Option C) \[g \circ f\left( 0 \right) = - 8\]
Apply the rule of the composition of functions.
\[g \circ f\left( 0 \right) = g\left( {f\left( 0 \right)} \right)\]
Here, first calculate the value of \[f\left( 0 \right)\].
From the given function \[f\left( x \right)\], we get \[f\left( 0 \right) = 7{\left( 0 \right)^2} + 0 - 8\].
So,
\[g \circ f\left( 0 \right) = g\left( {7{{\left( 0 \right)}^2} + 0 - 8} \right)\]
\[ \Rightarrow g \circ f\left( 0 \right) = g\left( { - 8} \right)\]
Now from the given function \[g\left( x \right)\], we get
\[g \circ f\left( 0 \right) = \left| { - 8} \right|\]
\[ \Rightarrow g \circ f\left( 0 \right) = 8\]
Thus, option C is incorrect.
Option D) \[g \circ f\left( 6 \right) = 427\]
Apply the rule of the composition of functions.
\[g \circ f\left( 6 \right) = g\left( {f\left( 6 \right)} \right)\]
Here, first calculate the value of \[f\left( 6 \right)\].
From the given function \[f\left( x \right)\], we get \[f\left( 6 \right) = 4\left( 6 \right) + 5\].
So,
\[g \circ f\left( 6 \right) = g\left( {4\left( 6 \right) + 5} \right)\]
\[ \Rightarrow g \circ f\left( 6 \right) = g\left( {29} \right)\]
Now from the given function \[g\left( x \right)\], we get
\[g \circ f\left( 6 \right) = {\left( {29} \right)^2} + 4\]
\[ \Rightarrow g \circ f\left( 6 \right) = 841 + 4\]
\[ \Rightarrow g \circ f\left( 6 \right) = 845\]
Thus, option D is incorrect.
From the above solved options, we get
Option ‘B’ is correct
Note: Students sometimes make mistake and calculate \[g \circ f\left( x \right)\] as \[f \circ g\left( x \right)\]. They forget that composite function is not a commutative function. So, \[g \circ f\left( x \right) \ne f \circ g\left( x \right)\].
Formula Used: Composition of functions:
\[f \circ g\left( x \right) = f\left( {g\left( x \right)} \right)\]
\[g \circ f\left( x \right) = g\left( {f\left( x \right)} \right)\]
Complete step by step solution: Given:
The functions \[f\] and \[g\] from \[R\] to \[R\] are defined as \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{7{x^2} + x - 8,}&{x \le 1}\\\begin{array}{l}4x + 5,\\8x + 3\end{array}&\begin{array}{l}1 < x \le 7\\x > 7\end{array}\end{array}} \right.\] and \[g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\left| x \right|,}&{x < - 3}\\\begin{array}{l}0,\\{x^2} + 4,\end{array}&\begin{array}{l} - 3 \le x < 2\\x \ge 2\end{array}\end{array}} \right.\].
Let’s solve each option by using the rule of the composition of functions.
Option A) \[f \circ g\left( { - 3} \right) = 8\]
Apply the rule of the composition of functions.
\[f \circ g\left( { - 3} \right) = f\left( {g\left( { - 3} \right)} \right)\]
Here, first calculate the value of \[g\left( { - 3} \right)\].
From the given function \[g\left( x \right)\], we get \[g\left( { - 3} \right) = 0\].
So,
\[f \circ g\left( { - 3} \right) = f\left( 0 \right)\]
Now from the given function \[f\left( x \right)\], we get
\[f \circ g\left( { - 3} \right) = 7{\left( 0 \right)^2} + \left( 0 \right) - 8\]
\[ \Rightarrow f \circ g\left( { - 3} \right) = 0 + 0 - 8\]
\[ \Rightarrow f \circ g\left( { - 3} \right) = - 8\]
Thus, option A is incorrect.
Option B) \[f \circ g\left( 9 \right) = 683\]
Apply the rule of the composition of functions.
\[f \circ g\left( 9 \right) = f\left( {g\left( 9 \right)} \right)\]
Here, first calculate the value of \[g\left( 9 \right)\].
From the given function \[g\left( x \right)\], we get \[g\left( 9 \right) = {\left( 9 \right)^2} + 4\].
So,
\[f \circ g\left( 9 \right) = f\left( {{{\left( 9 \right)}^2} + 4} \right)\]
\[ \Rightarrow f \circ g\left( 9 \right) = f\left( {85} \right)\]
Now from the given function \[f\left( x \right)\], we get
\[f \circ g\left( 9 \right) = 8\left( {85} \right) + 3\]
\[ \Rightarrow f \circ g\left( 9 \right) = 680 + 3\]
\[ \Rightarrow f \circ g\left( 9 \right) = 683\]
Thus, option B is correct.
Option C) \[g \circ f\left( 0 \right) = - 8\]
Apply the rule of the composition of functions.
\[g \circ f\left( 0 \right) = g\left( {f\left( 0 \right)} \right)\]
Here, first calculate the value of \[f\left( 0 \right)\].
From the given function \[f\left( x \right)\], we get \[f\left( 0 \right) = 7{\left( 0 \right)^2} + 0 - 8\].
So,
\[g \circ f\left( 0 \right) = g\left( {7{{\left( 0 \right)}^2} + 0 - 8} \right)\]
\[ \Rightarrow g \circ f\left( 0 \right) = g\left( { - 8} \right)\]
Now from the given function \[g\left( x \right)\], we get
\[g \circ f\left( 0 \right) = \left| { - 8} \right|\]
\[ \Rightarrow g \circ f\left( 0 \right) = 8\]
Thus, option C is incorrect.
Option D) \[g \circ f\left( 6 \right) = 427\]
Apply the rule of the composition of functions.
\[g \circ f\left( 6 \right) = g\left( {f\left( 6 \right)} \right)\]
Here, first calculate the value of \[f\left( 6 \right)\].
From the given function \[f\left( x \right)\], we get \[f\left( 6 \right) = 4\left( 6 \right) + 5\].
So,
\[g \circ f\left( 6 \right) = g\left( {4\left( 6 \right) + 5} \right)\]
\[ \Rightarrow g \circ f\left( 6 \right) = g\left( {29} \right)\]
Now from the given function \[g\left( x \right)\], we get
\[g \circ f\left( 6 \right) = {\left( {29} \right)^2} + 4\]
\[ \Rightarrow g \circ f\left( 6 \right) = 841 + 4\]
\[ \Rightarrow g \circ f\left( 6 \right) = 845\]
Thus, option D is incorrect.
From the above solved options, we get
Option ‘B’ is correct
Note: Students sometimes make mistake and calculate \[g \circ f\left( x \right)\] as \[f \circ g\left( x \right)\]. They forget that composite function is not a commutative function. So, \[g \circ f\left( x \right) \ne f \circ g\left( x \right)\].
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
