
Evaluate \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
A. \[\tan x - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + C\]
B. \[\sec x - \dfrac{{x\tan x}}{{x\sin x + \cos x}} + C\]
C. \[\sec x + \dfrac{{x\tan x}}{{x\sin x + \cos x}} + C\]
D. \[\tan x + \dfrac{{x\sec x}}{{x\sin x + \cos x}} + C\]
Answer
163.5k+ views
Hint: First we will simplify the numerator of the integrating term. Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]. We will apply the \[uv\] formula of integration and then we will assume \[t = x\sin x + \cos x\] and find the derivative of it to find \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Formula used
\[\cos x \cdot \sec x = 1\]
\[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\sin x = \cos x\]
\[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\int {\dfrac{1}{{{t^2}}}} dt = - \dfrac{1}{t} + C\]
\[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[\int {{{\sec }^2}xdx} = \tan x + C\]
Complete step by step solution:
Given integration is \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Now rewrite the numerator
\[ = \int {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]
\[ = \int {\dfrac{{x\cos x \cdot x\sec x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {x\sec x \cdot \dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Apply \[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[ = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \] ………(1)
Now calculating \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Let \[x\sin x + \cos x = t\]
Differentiate both sides
\[\left( {x\cos x + \sin x - \sin x} \right)dx = dt\]
\[ \Rightarrow x\cos xdx = dt\]
Now substitute \[x\cos xdx = dt\] and \[x\sin x + \cos x = t\] in \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {\dfrac{1}{{{t^2}}}} dt\]
Apply the formula \[\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + C\]
\[ = - \dfrac{1}{t} + {C_1}\]
Now substituting \[x\sin x + \cos x = t\]
\[ = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\]
Now calculating the differential \[\dfrac{d}{{dx}}\left( {x\sec x} \right)\]
Applying the formula \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{d}{{dx}}\sec x + \sec x\dfrac{d}{{dx}}x\]
Applying the formula \[\dfrac{d}{{dx}}\sec x = \sec x\tan x\] and \[\dfrac{d}{{dx}}x = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x \cdot 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x \cdot \dfrac{1}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{{\sin x}}{{{{\cos }^2}x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\]
Now putting \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\] and \[\dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\] in equation (1)
\[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {\dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right)dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {{{\sec }^2}xdx} \]
Now applying the formula \[\int {{{\sec }^2}xdx} = \tan x + C\]
\[ = - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + \tan x + C\]
Hence option A is the correct option.
Note: Many students try to solve the integration directly and they do not substitute \[x\cos x \cdot x\sec x\] in numerator. For this reason, they are unable to reach the answer.
Formula used
\[\cos x \cdot \sec x = 1\]
\[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\sin x = \cos x\]
\[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\int {\dfrac{1}{{{t^2}}}} dt = - \dfrac{1}{t} + C\]
\[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[\int {{{\sec }^2}xdx} = \tan x + C\]
Complete step by step solution:
Given integration is \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Now rewrite the numerator
\[ = \int {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]
\[ = \int {\dfrac{{x\cos x \cdot x\sec x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {x\sec x \cdot \dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Apply \[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[ = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \] ………(1)
Now calculating \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Let \[x\sin x + \cos x = t\]
Differentiate both sides
\[\left( {x\cos x + \sin x - \sin x} \right)dx = dt\]
\[ \Rightarrow x\cos xdx = dt\]
Now substitute \[x\cos xdx = dt\] and \[x\sin x + \cos x = t\] in \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {\dfrac{1}{{{t^2}}}} dt\]
Apply the formula \[\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + C\]
\[ = - \dfrac{1}{t} + {C_1}\]
Now substituting \[x\sin x + \cos x = t\]
\[ = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\]
Now calculating the differential \[\dfrac{d}{{dx}}\left( {x\sec x} \right)\]
Applying the formula \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{d}{{dx}}\sec x + \sec x\dfrac{d}{{dx}}x\]
Applying the formula \[\dfrac{d}{{dx}}\sec x = \sec x\tan x\] and \[\dfrac{d}{{dx}}x = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x \cdot 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x \cdot \dfrac{1}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{{\sin x}}{{{{\cos }^2}x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\]
Now putting \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\] and \[\dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\] in equation (1)
\[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {\dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right)dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {{{\sec }^2}xdx} \]
Now applying the formula \[\int {{{\sec }^2}xdx} = \tan x + C\]
\[ = - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + \tan x + C\]
Hence option A is the correct option.
Note: Many students try to solve the integration directly and they do not substitute \[x\cos x \cdot x\sec x\] in numerator. For this reason, they are unable to reach the answer.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE
