
Evaluate \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
A. \[\tan x - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + C\]
B. \[\sec x - \dfrac{{x\tan x}}{{x\sin x + \cos x}} + C\]
C. \[\sec x + \dfrac{{x\tan x}}{{x\sin x + \cos x}} + C\]
D. \[\tan x + \dfrac{{x\sec x}}{{x\sin x + \cos x}} + C\]
Answer
216k+ views
Hint: First we will simplify the numerator of the integrating term. Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]. We will apply the \[uv\] formula of integration and then we will assume \[t = x\sin x + \cos x\] and find the derivative of it to find \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Formula used
\[\cos x \cdot \sec x = 1\]
\[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\sin x = \cos x\]
\[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\int {\dfrac{1}{{{t^2}}}} dt = - \dfrac{1}{t} + C\]
\[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[\int {{{\sec }^2}xdx} = \tan x + C\]
Complete step by step solution:
Given integration is \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Now rewrite the numerator
\[ = \int {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]
\[ = \int {\dfrac{{x\cos x \cdot x\sec x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {x\sec x \cdot \dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Apply \[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[ = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \] ………(1)
Now calculating \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Let \[x\sin x + \cos x = t\]
Differentiate both sides
\[\left( {x\cos x + \sin x - \sin x} \right)dx = dt\]
\[ \Rightarrow x\cos xdx = dt\]
Now substitute \[x\cos xdx = dt\] and \[x\sin x + \cos x = t\] in \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {\dfrac{1}{{{t^2}}}} dt\]
Apply the formula \[\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + C\]
\[ = - \dfrac{1}{t} + {C_1}\]
Now substituting \[x\sin x + \cos x = t\]
\[ = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\]
Now calculating the differential \[\dfrac{d}{{dx}}\left( {x\sec x} \right)\]
Applying the formula \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{d}{{dx}}\sec x + \sec x\dfrac{d}{{dx}}x\]
Applying the formula \[\dfrac{d}{{dx}}\sec x = \sec x\tan x\] and \[\dfrac{d}{{dx}}x = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x \cdot 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x \cdot \dfrac{1}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{{\sin x}}{{{{\cos }^2}x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\]
Now putting \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\] and \[\dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\] in equation (1)
\[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {\dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right)dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {{{\sec }^2}xdx} \]
Now applying the formula \[\int {{{\sec }^2}xdx} = \tan x + C\]
\[ = - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + \tan x + C\]
Hence option A is the correct option.
Note: Many students try to solve the integration directly and they do not substitute \[x\cos x \cdot x\sec x\] in numerator. For this reason, they are unable to reach the answer.
Formula used
\[\cos x \cdot \sec x = 1\]
\[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\sin x = \cos x\]
\[\dfrac{d}{{dx}}\cos x = - \sin x\]
\[\int {\dfrac{1}{{{t^2}}}} dt = - \dfrac{1}{t} + C\]
\[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[\int {{{\sec }^2}xdx} = \tan x + C\]
Complete step by step solution:
Given integration is \[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx\].
Now rewrite the numerator
\[ = \int {\dfrac{{{x^2}}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Rewrite the numerator of the integrating term as \[x\cos x \cdot x\sec x\]
\[ = \int {\dfrac{{x\cos x \cdot x\sec x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {x\sec x \cdot \dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Apply \[\int {uvdx} = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]} dx\]
\[ = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \] ………(1)
Now calculating \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
Let \[x\sin x + \cos x = t\]
Differentiate both sides
\[\left( {x\cos x + \sin x - \sin x} \right)dx = dt\]
\[ \Rightarrow x\cos xdx = dt\]
Now substitute \[x\cos xdx = dt\] and \[x\sin x + \cos x = t\] in \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx\]
\[ = \int {\dfrac{1}{{{t^2}}}} dt\]
Apply the formula \[\int {\dfrac{1}{{{x^2}}}} dx = - \dfrac{1}{x} + C\]
\[ = - \dfrac{1}{t} + {C_1}\]
Now substituting \[x\sin x + \cos x = t\]
\[ = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\]
Now calculating the differential \[\dfrac{d}{{dx}}\left( {x\sec x} \right)\]
Applying the formula \[\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}\]
\[\dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{d}{{dx}}\sec x + \sec x\dfrac{d}{{dx}}x\]
Applying the formula \[\dfrac{d}{{dx}}\sec x = \sec x\tan x\] and \[\dfrac{d}{{dx}}x = 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x \cdot 1\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\sec x\tan x + \sec x\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x \cdot \dfrac{1}{{\cos x}} \cdot \dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = x\dfrac{{\sin x}}{{{{\cos }^2}x}} + \dfrac{1}{{\cos x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\]
Now putting \[\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx = - \dfrac{1}{{x\sin x + \cos x}} + {C_1}\] and \[\dfrac{d}{{dx}}\left( {x\sec x} \right) = \dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\] in equation (1)
\[{\int {\left( {\dfrac{x}{{x\sin x + \cos x}}} \right)} ^2}dx = x\sec x \cdot \int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx - \int {\left[ {\dfrac{d}{{dx}}\left( {x\sec x} \right)\int {\dfrac{{x\cos x}}{{{{\left( {x\sin x + \cos x} \right)}^2}}}} dx} \right]dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {\dfrac{{x\sin x + \cos x}}{{{{\cos }^2}x}}\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right)dx} \]
\[ = x\sec x\left( { - \dfrac{1}{{x\sin x + \cos x}}} \right) + \int {{{\sec }^2}xdx} \]
Now applying the formula \[\int {{{\sec }^2}xdx} = \tan x + C\]
\[ = - \dfrac{{x\sec x}}{{x\sin x + \cos x}} + \tan x + C\]
Hence option A is the correct option.
Note: Many students try to solve the integration directly and they do not substitute \[x\cos x \cdot x\sec x\] in numerator. For this reason, they are unable to reach the answer.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

