Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Trigonometric Functions Class 11 Notes CBSE Maths Chapter 3 [Free PDF Download]

ffImage
Last updated date: 17th Apr 2024
Total views: 745.2k
Views today: 7.45k

Revision Notes for CBSE Class 11 Maths Chapter 3 (Trigonometric Functions) - Free PDF Download

Trigonometry Functions are one of the most important topics in Class 11 Mathematics. It tells about the relationship between the sides and angles of a right-angle triangle. Trigonometric Functions Class 11 Notes are the important study material for the students looking to clear their basic concepts of trigonometric functions. It helps them to more confidently solve the trigonometry based questions as the Class 11 Maths Chapter 3 notes enable students to get an immediate overview of all the topics along with the formulas covered in Class 11 Maths Chapter 3.

These Trigonometric Functions Class 11 Notes are arranged systematically for students' comfort and students are suggested to refer to these revision notes whenever required. Students can prepare the complete chapter effectively with the help of Class 11 Maths notes Chapter 3 notes as the contents in these notes are made quite interactive.

Class 11 students can access free Trigonometric Functions Class 11 notes pdf by clicking on the link given below.


Download CBSE Class 11 Maths Revision Notes 2024-25 PDF

Also, check CBSE Class 11 Maths revision notes for all chapters:


Trigonometric Functions Chapter-Related Important Study Materials
It is a curated compilation of relevant online resources that complement and expand upon the content covered in a specific chapter. Explore these links to access additional readings, explanatory videos, practice exercises, and other valuable materials that enhance your understanding of the chapter's subject matter.

Competitive Exams after 12th Science

Trigonometric Functions Class 11 Notes Maths - Basic Subjective Questions


Section–A (1 Mark Questions)

1. If $tan\Theta =\frac{-4}{3}$ , then find $sin\Theta$.

Ans. Since, $\tan \theta=-\frac{4}{3}$ is negative, $\theta$ lies either in second quadrant or in fourth quadrant.

$$ \begin{aligned} & \because 1+\cot ^2 \theta=\operatorname{cosec}^2 \theta \\ & \Rightarrow 1+\frac{1}{\left(-\frac{4}{3}\right)^2}=\frac{1}{\sin ^2 \theta} \\ & \Rightarrow \sin ^2 \theta=\left(\frac{4}{5}\right)^2 \end{aligned} $$


Thus $\sin \theta=\frac{4}{5}$ if $\theta$ lies in the second quadrant or $\sin \theta=-\frac{4}{5}$, if $\theta$ lies in the fourth quadrant.


2. Find the greatest value of sin x cos x.

Ans. $\sin x \cos x=\frac{1}{2}(2 \sin x \cos x)=\frac{1}{2} \sin 2 x$ Greatest value of $\sin 2 x=1$


$\therefore$ Greatest value of $\dfrac{1}{2} \sin 2 x=\dfrac{1}{2} \times 1=\dfrac{1}{2}$


3. Find the degree measure of angle $\left ( \frac{\pi }{8} \right )^{c}$  radian.

Ans. We know that, $\pi$ radians $=180^{\circ}$


$$ \begin{aligned} & \Rightarrow \frac{\pi}{8} \text { radians }=22.5^{\circ} \\ & =22^{\circ}+0.5^{\circ}=22^{\circ}+30^{\prime}=22^{\circ} 30^{\prime} \end{aligned} $$


4. Evaluate: $sin \left ( \frac{-15\pi }{4} \right )$ .

Ans.

$$ \begin{aligned} & \text { 4. } \sin \left(\frac{-15 \pi}{4}\right)=\sin \left(\frac{-16 \pi+\pi}{4}\right) \\ & =\sin \left(-4 \pi+\frac{\pi}{4}\right) \\ & =\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \end{aligned} $$


5. The minute hand of a watch is 1.5 cm long. How far does it tip move in 40 minutes? (Use $\pi$ = 3.14).

Ans. Angle rotated by minute hand in 60 minutes = $2\pi$    radians 

Therefore, angle rotated by minute hand in 40 minutes = $\frac{40}{60}\times2\pi =\frac{4\pi }{3}$  radians.

Hence, the required distance travelled is given by

$l=r\Theta =1.5\times\frac{4\pi }{3}cm=2\pi\;cm$

$=2\times3.14\;cm=6.28\;cm$


Section–B (2 Marks Questions)

6. Prove that cot2x cotx - cot3x cot2x - cot3x cotx = 1

Ans. We have, cot 3x=cot (2x+x)

$\Rightarrow cot\;3x=\dfrac{cot\;2x\;cot\;x -1}{cot\;2x+cot\;x}$

$\Rightarrow$ Cot 3x cot 2x + cot 3x cot x = cot 2x cot x-1

$\Rightarrow$ cot 2x cot x - cot 3x cot 2x - cot 3x xot x=1


7. Evaluate: $\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$ 

Ans. Given that: $\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$

Let $\Theta =15^{\circ}$

$\therefore 2\Theta =30^{\circ}$

We know that, $\therefore cos\;2\Theta =\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$

$\Rightarrow  cos\;30 =\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}$

$\frac{1-\tan^2{15^\circ}}{1+\tan^2{15^\circ}}=\frac{\sqrt{3}}{3}$



8. If for real value of x, $cos\Theta =x+\frac{1}{x}$ then what can you say about $\Theta$   ?

Ans. Given that: $cos\Theta =x+\frac{1}{x}$ 


$\Rightarrow cos\Theta =x+\frac{1}{x}$


$$ \begin{aligned} & \Rightarrow x^2+1=x \cos \theta \\ & \Rightarrow x^2-x \cos \theta+1=0 \end{aligned} $$

For real value of $x, b^2-4 a c \geq 0$


$$ \begin{aligned} & \Rightarrow(-\cos \theta)^2-4 \times 1 \times 1 \geq 0 \\ & \Rightarrow \cos ^2 \theta-4 \geq 0 \\ & \Rightarrow \cos ^2 \theta \geq 4 \\ & \Rightarrow \cos \theta \geq \pm 2 \quad[\because-1 \leq \cos \theta \leq 1] \end{aligned} $$


So, the value of $\theta$ is not possible.



9. Find the value of $sin\left ( \frac{\pi }{4}+\Theta  \right )-cos \left ( \frac{\pi }{4}-\Theta  \right )$ .

Ans. Given expression :


$$ \begin{aligned} & \sin \left(\frac{\pi}{4}+\theta\right)-\cos \left(\frac{\pi}{4}-\theta\right) \\ & \sin \left(\frac{\pi}{4}+\theta\right)=\sin \left(\frac{\pi}{4}\right) \cos \theta+\cos \left(\frac{\pi}{4}\right) \sin \theta \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta \\ & \cos \left(\frac{\pi}{4}-\theta\right)=\cos \left(\frac{\pi}{4}\right) \cos \theta+\sin \left(\frac{\pi}{4}\right) \sin \theta \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta \\ & \therefore \sin \left(\frac{\pi}{4}+\theta\right)-\cos \left(\frac{\pi}{4}-\theta\right) \\ & =\frac{1}{\sqrt{2}} \cos \theta+\frac{1}{\sqrt{2}} \sin \theta-\frac{1}{\sqrt{2}} \cos \theta-\frac{1}{\sqrt{2}} \sin \theta \\ & =0 \end{aligned} $$


10. Find the value of $tan\;\frac{\pi }{12}$ .

Ans. $\tan \frac{\pi}{12}=\tan \left(\frac{\pi}{4}-\frac{\pi}{6}\right)$


$$ \begin{aligned} & =\frac{\tan \frac{\pi}{4}-\tan \frac{\pi}{6}}{1+\tan \frac{\pi}{4} \cdot \tan \frac{\pi}{6}}=\frac{1-\frac{1}{\sqrt{3}}}{1+1 \cdot \frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1} \\ & =\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3} \end{aligned} $$


11. Prove that : $tan\;225^{\circ}\;cot\;405^{\circ}+tan\;765^{\circ}\;cot\;675^{\circ}=0$ 

Ans.

$$ \begin{aligned} & \text { 11. LHS }= \\ & \tan 225^{\circ} \cot 405^{\circ}+\tan 765^{\circ} \cot 675^{\circ} \\ & =\tan \left(180^{\circ}+45^{\circ}\right) \cot \left(360^{\circ}+45^{\circ}\right) \\ & \quad \quad \quad \quad \tan \left(360^{\circ} \times 2+45^{\circ}\right) \cot \left(360^{\circ} \times 2-45^{\circ}\right) \\ & =\tan 45^{\circ} \cot 45^{\circ}+\tan 45^{\circ}\left[-\cot 45^{\circ}\right] \\ & =1 \times 1-1 \times 1 \\ & =0=\text { RHS } \end{aligned} $$

Hence proved.


12. For $0<x<\frac{\pi }{2}$ , show that $\sqrt{\frac{(1-cos2x)}{1+cos2x}}=tan\;x$ 

Ans.

$$ \begin{aligned} & \text { LHS }=\sqrt{\frac{(1-\cos 2 x)}{(1+\cos 2 x)}} \\ & =\sqrt{\frac{1-\left(1-2 \sin ^2 x\right)}{1+\left(2 \cos ^2 x-1\right)}}=\sqrt{\frac{2 \sin ^2 x}{2 \cos ^2 x}} \\ & =|\tan x|=\tan x \quad\left\{\because 0<x<\frac{\pi}{2}\right\} \\ & =\text { RHS } \end{aligned} $$


13. Prove that: $\frac{cos(2\pi +x)cosec(2\pi +x)tan\left ( \frac{\pi }{2}+x \right )}{sec\left ( \frac{\pi }{2}+x \right )cos\;x\;cot(\pi +x)}=1$ 

Ans. LHS $=$


$$\cos (2 \pi+x) \operatorname{cosec}(2 \pi+x) \tan \left(\frac{\pi}{2}+x\right)$$


$$ \begin{aligned} & \sec \left(\frac{\pi}{2}+x\right) \cos x \cot (\pi+x) \\ \Rightarrow & \frac{-\cos x \operatorname{cosec} x \cot x}{-\operatorname{cosec} x \cos x \cot x}=1 \end{aligned} $$

Hence proved


PDF Summary - Class 11 Maths Trigonometric FunctionsNotes (Chapter 3)

1. The Meaning of Trigonometry

${{\text{Tri }}}{{\text{ Gon }}}{{\text{ Metron }}}$

$\downarrow\quad\;\;\;\;\downarrow\quad\;\;\;\;\downarrow$

$3\quad{{\text{ sides }}}{{\text{ Measure }}}$

As a result, this area of mathematics was established in the ancient past to measure a triangle's three sides, three angles, and six components. Time-trigonometric functions are utilised in a variety of ways nowadays. The sine and cosine of an angle in a right-angled triangle are the two fundamental functions, and there are four more derivative functions.


2. Basic Trigonometric Identities

(a) ${\sin ^2}\theta  + {\cos ^2}\theta  = 1: - 1 \leqslant \sin \theta  \leqslant 1; - 1 \leqslant \cos \theta  \leqslant 1\forall \theta  \in {\text{R}}$

(b) ${\sec ^2}\theta  - {\tan ^2}\theta  = 1:|\sec \theta | \geqslant 1\forall \theta  \in {\text{R}}$

(c) ${\operatorname{cosec} ^2}\theta  - {\cot ^2}\theta  = 1:|\operatorname{cosec} \theta | \geqslant 1\forall \theta  \in {\text{R}}$


Trigonometric Ratios of Standard Angles:

Angles(In Degrees)

\[0^\circ \]

${30^ \circ }$

${45^ \circ }$

${60^ \circ }$

${90^ \circ }$

${180^ \circ }$

${270^ \circ }$

$360^\circ $

Angles(In radians)

0

$\dfrac{\pi }{6}$

$\dfrac{\pi }{4}$

$\dfrac{\pi }{3}$

$\dfrac{\pi }{2}$

$\pi $

$\dfrac{{3\pi }}{2}$

$2\pi $

Sin

0

$\dfrac{1}{2}$

$\dfrac{1}{{\sqrt 2 }}$

$\dfrac{{\sqrt 3 }}{2}$

1

0

-1

0

Cos

1

$\dfrac{{\sqrt 3 }}{2}$

$\dfrac{1}{{\sqrt 2 }}$

$\dfrac{1}{2}$

0

-1

0

1

Tan

0

$\dfrac{1}{{\sqrt 3 }}$

1

$\sqrt 3 $

Not Defined

0

Not Defined

1

Cot

Not Defined

$\sqrt 3 $

1

$\dfrac{1}{{\sqrt 3 }}$

0

Not Defined

0

Not Defined

Csc

Not Defined

2

$\sqrt 2 $

$\dfrac{2}{{\sqrt 3 }}$

1

Not Defined

-1

Not Defined

Sec

1

$\dfrac{2}{{\sqrt 3 }}$

$\sqrt 2 $

2

Not Defined

-1

Not Defined

1


The relation between these trigonometric identities with the sides of the triangles can be given as follows:

  • Sine θ $=$ Opposite/Hypotenuse

  • Cos θ  $=$ Adjacent/Hypotenuse

  • Tan θ  $=$ Opposite/Adjacent

  • Cot θ $=$ Adjacent/Opposite

  • Cosec θ  = Hypotenuse/Opposite

  • Sec θ  = Hypotenuse/Adjacent

The following are the signs of trigonometric ratios in different quadrants:


Signs of Trigonometric ratio


3. Trigonometric Ratios of Allied Angles

We might calculate the trigonometric ratios of angles of any value using the trigonometric ratio of allied angles.

1. Sin(–θ)=–Sinθ

2. Cos(–θ)=Cosθ

3. Tan(–θ)=–Tanθ

4. Sin(90o–θ)=Cosθ

5. Cos(90o–θ)=Sinθ

6. Tan(90o–θ)=Cotθ

7. Sin(180o–θ)=Sinθ

8. Cos(180o–θ)=–Cosθ

9. Tan(180o–θ)=–Tanθ

10. Sin(270o–θ)=–Cosθ

11. Cos(270o–θ)=–Sinθ

12. Tan(270o–θ)=Cotθ

13. Sin(90o+θ)=Cosθ

14. Cos(90o+θ)=–Sinθ

15. Tan(90o+θ)=–Cotθ

16. Sin(180o+θ)=–Sinθ

17. Cos(180o+θ)=–Cosθ

18. Tan(180o+θ)=Tanθ

19. Sin(270o+θ)=–Cosθ

20. Cos(270o+θ)=Sinθ

21. Tan(270o+θ)=–Cotθ


4. Trigonometric Functions of Sum or Difference of Two Angles

(a) $\sin ({\text{A}} + {\text{B}}) = \sin {\text{A}}\cos {\text{B}} + \cos {\text{A}}\sin {\text{B}}$

(b) $\sin ({\text{A}} - {\text{B}}) = \sin {\text{A}}\cos {\text{B}} - \cos {\text{A}}\sin {\text{B}}$

(c) $\cos (A + B) = \cos A\cos B - \sin A\sin B$

(d) $\cos ({\text{A}} - {\text{B}}) = \cos {\text{A}}\cos {\text{B}} + \sin {\text{A}}\sin {\text{B}}$

(e) $\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$

(f) $\tan ({\text{A}} - {\text{B}}) = \dfrac{{\tan {\text{A}} - \tan {\text{B}}}}{{1 + \tan {\text{A}}\tan {\text{B}}}}$

(g) $\cot (A + B) = \dfrac{{\cot A\cot B - 1}}{{\cot B + \cot A}}$

(f) $\cot ({\text{A}} - {\text{B}}) = \dfrac{{\cot {\text{A}}\cot {\text{B}} + 1}}{{\cot {\text{B}} - \cot {\text{A}}}}$

(h) ${\sin ^2}\;{\text{A}} - {\sin ^2}\;{\text{B}} = {\cos ^2}\;{\text{B}} - {\cos ^2}\;{\text{A}} = \sin ({\text{A}} + {\text{B}}) \cdot \sin ({\text{A}} - {\text{B}})$

(i) ${\cos ^2}\;{\text{A}} - {\sin ^2}\;{\text{B}} = {\cos ^2}\;{\text{B}} - {\sin ^2}\;{\text{A}} = \cos ({\text{A}} + {\text{B}}) \cdot \cos ({\text{A}} - {\text{B}})$

(j) $\tan (A + B + C) = \dfrac{{\tan A + \tan B + \tan C - \tan A\tan B\tan C}}{{1 - \tan A\tan B - \tan B\tan C - \tan C\tan A}}$


5. Multiple Angles and Half Angles

(a) $\sin 2\;{\text{A}} = 2\sin {\text{A}}\cos {\text{A}};\quad \sin \theta  = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$

(b) $\cos 2\;{\text{A}} = {\cos ^2}\;{\text{A}} - {\sin ^2}\;{\text{A}} = 2{\cos ^2}\;{\text{A}} - 1 = 1 - 2{\sin ^2}\;{\text{A}}$ 

$2{\cos ^2}\dfrac{\theta }{2} = 1 + \cos \theta ,2{\sin ^2}\dfrac{\theta }{2} = 1 - \cos \theta $

(c) $\tan 2\;{\text{A}} = \dfrac{{2\tan {\text{A}}}}{{1 - {{\tan }^2}\;{\text{A}}}};\tan \theta  = \dfrac{{2\tan \dfrac{\theta }{2}}}{{1 - {{\tan }^2}\dfrac{\theta }{2}}}$

(d) $\sin 2\;{\text{A}} = \dfrac{{2\tan {\text{A}}}}{{1 - {{\tan }^2}\;{\text{A}}}};\cos 2\;{\text{A}} = \dfrac{{1 - {{\tan }^2}\;{\text{A}}}}{{1 + {{\tan }^2}\;{\text{A}}}}$

(e) $\sin 3\;{\text{A}} = 3\sin {\text{A}} - 4{\sin ^3}\;{\text{A}}$

(f) $\cos 3\;{\text{A}} = 4{\cos ^3}\;{\text{A}} - 3\cos {\text{A}}$

(g) $\tan 3\;{\text{A}} = \dfrac{{3\tan {\text{A}} - {{\tan }^3}\;{\text{A}}}}{{1 - 3{{\tan }^2}\;{\text{A}}}}$


6. Transformation of Products into Sum or Difference of Sines & Cosines

(a) $2\sin {\text{A}}\cos {\text{B}} = \sin ({\text{A}} + {\text{B}}) + \sin ({\text{A}} - {\text{B}})$

(b) $2\cos {\text{A}}\sin {\text{B}} = \sin ({\text{A}} + {\text{B}}) - \sin ({\text{A}} - {\text{B}})$

(c) $2\cos {\text{A}}\cos {\text{B}} = \cos ({\text{A}} + {\text{B}}) + \cos ({\text{A}} - {\text{B}})$

(d) $2\sin {\text{A}}\sin {\text{B}} = \cos ({\text{A}} - {\text{B}}) - \cos ({\text{A}} + {\text{B}})$


7. Factorisation of the Sum or Difference of Two Sines or Cosines

(a) $\sin {\text{C}} + \sin {\text{D}} = 2\sin \dfrac{{{\text{C}} + {\text{D}}}}{2}\cos \dfrac{{{\text{C}} - {\text{D}}}}{2}$

(b) $\sin {\text{C}} - \sin {\text{D}} = 2\cos \dfrac{{{\text{C}} + {\text{D}}}}{2}\sin \dfrac{{{\text{C}} - {\text{D}}}}{2}$

(c) $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$

(d) $\cos {\text{C}} - \cos {\text{D}} =  - 2\sin \dfrac{{{\text{C}} + {\text{D}}}}{2}\sin \dfrac{{{\text{C}} - {\text{D}}}}{2}$


8. Important Trigonometric Ratios

(a) $\sin {\text{n}}\pi  = 0;\cos {\text{n}}\pi  = {( - 1)^{\text{n}}};\tan {\text{n}}\pi  = 0$ where ${\text{n}} \in {\text{Z}}$

(b) $\sin {15^\circ }$ or $\sin \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3  - 1}}{{2\sqrt 2 }} = \cos {75^\circ }$ or $\cos \dfrac{{5\pi }}{{12}}$

$\cos {15^\circ }$ or $\cos \dfrac{\pi }{{12}} = \dfrac{{\sqrt 3  + 1}}{{2\sqrt 2 }} = \sin {75^\circ }$ or $\sin \dfrac{{5\pi }}{{12}}$ 

$\tan {15^\circ } = \dfrac{{\sqrt 3  - 1}}{{\sqrt 3  + 1}} = 2 - \sqrt 3  = \cot {75^\circ }$ 

$\tan {75^\circ } = \dfrac{{\sqrt 3  + 1}}{{\sqrt 3  - 1}} = 2 + \sqrt 3  = \cot {15^\circ }$

(c) $\sin \dfrac{\pi }{{10}}$ or $\sin {18^\circ } = \dfrac{{\sqrt 5  - 1}}{4}$ & $\cos {36^\circ }$ or $\cos \dfrac{\pi }{5} = \dfrac{{\sqrt 5  + 1}}{4}$


9. Conditional Identities

If ${\text{A}} + {\text{B}} + {\text{C}} = \pi $ then :

(i) $\sin 2\;{\text{A}} + \sin 2\;{\text{B}} + \sin 2{\text{C}} = 4\sin {\text{A}}\sin {\text{B}}\sin {\text{C}}$

(ii) $\sin {\text{A}} + \sin {\text{B}} + \sin {\text{C}} = 4\cos \dfrac{{\text{A}}}{2}\cos \dfrac{{\text{B}}}{2}\cos \dfrac{{\text{C}}}{2}$

(iii) $\cos 2\;{\text{A}} + \cos 2\;{\text{B}} + \cos 2{\text{C}} =  - 1 - 4\cos {\text{A}}\cos {\text{B}}\cos {\text{C}}$

(iv) $\cos {\text{A}} + \cos {\text{B}} + \cos {\text{C}} = 1 + 4\sin \dfrac{{\text{A}}}{2}\sin \dfrac{{\text{B}}}{2}\sin \dfrac{{\text{C}}}{2}$

(v) $\tan {\text{A}} + \tan {\text{B}} + \tan {\text{C}} = \tan {\text{A}}\tan {\text{B}}\tan {\text{C}}$

(vi) $\tan \dfrac{{\text{A}}}{2}\tan \dfrac{{\text{B}}}{2} + \tan \dfrac{{\text{B}}}{2}\tan \dfrac{{\text{C}}}{2} + \tan \dfrac{{\text{C}}}{2}\tan \dfrac{{\text{A}}}{2} = 1$

(vii) $\cot \dfrac{{\text{A}}}{2} + \cot \dfrac{{\text{B}}}{2} + \cot \dfrac{{\text{C}}}{2} = \cot \dfrac{{\text{A}}}{2} \cdot \cot \dfrac{{\text{B}}}{2} \cdot \cot \dfrac{{\text{C}}}{2}$

(viii) $\cot A\cot B + \cot B\cot C + \cot C\cot A = 1$


10. Range of Trigonometric Expression

${{\text{E}} = {\text{a}}\sin \theta  + {\text{b}}\cos \theta }$

${{\text{E}} = \sqrt {{{\text{a}}^2} + {{\text{b}}^2}} \sin (\theta  + \alpha ),\left( {{\text{ where }}\tan \alpha  = \dfrac{{\text{b}}}{{\text{a}}}} \right)}$ 

${{\text{E}} = \sqrt {{{\text{a}}^2} + {{\text{b}}^2}} \cos (\theta  - \beta ),\left( {{\text{ where }}\tan \beta  = \dfrac{{\text{a}}}{{\text{b}}}} \right)}$

Hence for any real value of $\theta , - \sqrt {{a^2} + {b^2}}  \leqslant E \leqslant \sqrt {{a^2} + {b^2}} $

The trigonometric functions are very important for studying triangles, light, sound or waves. The values of these trigonometric functions in different domains and ranges can be used from the following table:

Trigonometric Functions in Different Domains and Ranges

Trigonometric Functions

Domain

Range

$\operatorname{Sin} x$

R

$-1 \leq \sin x \leq 1$

$\operatorname{Cos} x$

R

$-1 \leq \cos x \leq 1$

$\operatorname{Tan} x$

$R-\{(2 n+1) \pi / 2, n \in I$


R

$\operatorname{Cosec} x$

$R-\{(n\pi) , n \in I$

$R-\{x:-1<x<1\}$

$\operatorname{Sec} x$

$R-\{(2 n+1) \pi / 2, n \in I$

$R-\{x:-1<x<1\}$

$\operatorname{Cot} x$

$R-\{(n\pi) , n \in I$

R


11. Sine and Cosine Series

(a) $\quad \sin \alpha  + \sin (\alpha  + \beta ) + \sin (\alpha  + 2\beta ) +  \ldots . + \sin (\alpha  + \overline {n - 1} \beta )$

$ = \dfrac{{\sin \dfrac{{{\text{n}}\beta }}{2}}}{{\sin \dfrac{\beta }{2}}}\sin \left( {\alpha  + \dfrac{{{\text{n}} - 1}}{2}\beta } \right)$

(b) 

${\cos \alpha  + \cos (\alpha  + \beta ) + \cos (\alpha  + 2\beta ) +  \ldots  + \cos (\alpha  + \overline {n - 1} \beta )}$

${ = \dfrac{{\sin \dfrac{{n\beta }}{2}}}{{\sin \dfrac{\beta }{2}}}\cos \left( {\alpha  + \dfrac{{n - 1}}{2}\beta } \right)}$ 


12. Graphs of Trigonometric Functions 

(a). ${y = \sin x,}$

${x \in R;y \in [ - 1,1]}$ 


Sine function curve


(b). $y = \cos x$

$x \in R;y \in [ - 1,1]$ 


Cosine function curve


(c) ${y = \tan x}$

${x \in R - \left\{ {(2n + 1)\dfrac{\pi }{2};n \in Z} \right\};y \in R}$ 


Tangent function curve


(d) ${y = \cot x}$

${x \in R - \{ n\pi ;n \in z\} ;y \in R}$ 


Cotangent function curve


(e) ${y = \operatorname{cosec} x}$ 

${x \in R - \{ n\pi ;n \in Z\} ;y \in ( - \infty , - 1] \cup [1,\infty )}$


Cosecant function curve


(f) $y = \sec x\quad $

$x \in R - \left\{ {(2n + 1)\dfrac{\pi }{2};n \in Z} \right\};y \in ( - \infty , - 1] \cup [1,\infty )$ 


Secant function curve


Trigonometric Equations

13. Trigonometric Equations

Trigonometric equations are equations using trigonometric functions with unknown angles. 

e.g.,  $\cos \theta  = 0,{\cos ^2}\theta  - 4\cos \theta  = 1$.

The value of the unknown angle that satisfies a trigonometric equation is called a solution.

e.g., $\quad \sin \theta  = \dfrac{1}{{\sqrt 2 }} \Rightarrow \theta  = \dfrac{\pi }{4}$ or $\theta  = \dfrac{\pi }{4},\dfrac{{3\pi }}{4},\dfrac{{9\pi }}{4},\dfrac{{11\pi }}{4}, \ldots $

As a result, the trigonometric equation can have an unlimited number of solutions and is categorised as follows:

(i). Principal Solution

As we know, the values of $\sin x$ and $\cos x$ will get repeated after an interval of $2 \pi$. In the same way, the values of $\tan x$ will get repeated after an interval of $\pi$. 

So, if the equation has a variable $0 \leq \mathrm{x}<2 \pi$, then the solutions will be termed as principal solutions. 

Example:

Find the principal solutions of the equation $\sin x=\dfrac{\sqrt{3}}{2}$.

Solution: We know that, $\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$

Also, $\sin \dfrac{2 \pi}{3}=\sin \left(\pi-\dfrac{\pi}{3}\right)$

Now, we know that $\sin (\pi-x)=\sin x$. 

Hence, $\sin \dfrac{2 \pi}{3}=\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$

Therefore, the principal solutions of $\sin x=\dfrac{\sqrt{3}}{2}$ are $\mathrm{x}=\dfrac{\pi}{3}$ and $\dfrac{2 \pi}{3}$.

(ii). General solution

A general solution is one that involves the integer 'n' and yields all trigonometric equation solutions. Also, the character ' $\mathrm{Z}$ ' is used to denote the set of integers.

Find the solution of $\sin x=-\dfrac{\sqrt{3}}{2}$.

Solution: We know that $\sin \dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}$. Therefore, $\sin x=-\dfrac{\sqrt{3}}{2}=-\sin \dfrac{\pi}{3}$

Using the unit circle properties, we get $\sin x=-\sin \dfrac{\pi}{3}=\sin \left(\pi+\dfrac{\pi}{3}\right)=\sin \dfrac{4 \pi}{3}$ Hence, $\sin x=\sin \dfrac{4 \pi}{3}$

Since, we know that for any real numbers $x$ and $y, \sin x=\sin y$ implies $x=n \pi+(-1)^{n} y$, where $n \in Z$.

So, we get, $x=n \pi+(-1)^{\mathrm{n}}\left(\dfrac{4 \pi}{3}\right)$


14.1 Results

1. $\quad \sin \theta  = 0 \Leftrightarrow \theta  = \operatorname{n} \pi $

2. $\cos \theta  = 0 \Leftrightarrow \theta (2{\text{n}} + 1)\dfrac{\pi }{2}$

3. $\tan \theta  = 0 \Leftrightarrow \theta  = {\text{n}}\pi $

4. $\sin \theta  = \sin \alpha  \Leftrightarrow \theta  = {\text{n}}\pi  + {( - 1)^{\text{n}}}\alpha $, where $\alpha  \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$

5. $\cos \theta  = \cos \alpha  \Leftrightarrow \theta  = 2{\text{n}}\pi  \pm \alpha $, where $\alpha  \in [0,\pi ]$

6. $\tan \theta  = \tan \alpha  \Leftrightarrow \theta  = {\text{n}}\pi  + \alpha $, where $\alpha  \in \left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$

7. ${\sin ^2}\theta  = {\sin ^2}\alpha  \Leftrightarrow \theta  = {\text{n}}\pi  \pm \alpha $.

8. ${\cos ^2}\theta  = {\cos ^2}\alpha  \Leftrightarrow \theta  = $ n $\pi  \pm \alpha $.

9. ${\tan ^2}\theta  = {\tan ^2}\alpha  \Leftrightarrow \theta  = {\text{n}}\pi  \pm \alpha $.

10. $\sin \theta  = 1 \Leftrightarrow \theta  = (4{\text{n}} + 1)\dfrac{\pi }{2}$

11. $\cos \theta  = 1 \Leftrightarrow \theta  = 2{\text{n}}\pi $

12. $\cos \theta  =  - 1 \Leftrightarrow \theta  = (2{\text{n}} + 1)\pi $.

13. $\sin \theta  = \sin \alpha $ and $\cos \theta  = \cos \alpha  \Leftrightarrow \theta  = 2{\text{n}}\pi  + \alpha $


Steps to Solve Trigonometric Functions:

The following are the stages of solving trigonometric equations:

Step 1: Decompose the trigonometric equation into a single trigonometric ratio, preferably the sine or cos function.

Step 2: Factor the trigonometric polynomial given in terms of the ratio.

Step 3: Write down the general solution after solving for each factor.

Note:

1. Unless otherwise stated, is treated as an integer throughout this chapter.

2. Unless the answer is required in a specific interval or range, the general solution should be supplied.

3. The angle's main value is regarded as $\alpha $. (The main value is the angle with the least numerical value.)


Download Free Trigonometric Functions Class 11 Notes PDF

Class 11 students can easily download Trigonometric Functions Class 11 notes pdf and revise them at any time and anywhere. Chapter 3 Maths Class 11 pdf enables students to have excellent study patterns with which they can score maximum marks in the trigonometry section and even enjoy studying the topic.

Class 11 Maths Notes Chapter 3 summarize key points of the entire chapter in the easiest way so that students can remember them and also enhance their confidence before attempting the trigonometric questions in the exam. These revision notes are very important and beneficial as it helps you to quickly and effectively revise the entire chapter before the exam. Class 11 Maths Trigonometric Functions notes are prepared concisely from the latest edition of Class 11 Maths NCERT textbook.

The subject excerpts at Vedantu who prepared these revision notes thoroughly reviewed the last ten years question papers and then prepared the notes accordingly.

It can be tiresome for the students to keep each topic on their tips because of the substantial number of topics present in each chapter in the Class 11 Mathematics textbook. Hence, Trigonometric Functions Class 11 notes pdf plays a key role in making you memorize the topics of each chapter with ease. Download free Chapter 3 Maths Class 11 pdf with a single click on the pdf link given below.


A Few Glimpses of Class 11 Chapter 3 Trigonometric Functions

The word trigonometry is derived from the Greek word 'trignon' and 'metron' which implies 'measuring the slides of a triangle'. This topic was originally developed to solve the geometrical problem including triangles. Trigonometry was used by engineers, sea captains for navigation purposes, surveyors to find out new lands, etc. Presently, trigonometry is used in many areas such as for estimating the heights of tides in the ocean, designing electric current, the science of seismology, etc.

In your earlier classes, you must have studied trigonometric ratios of an acute angle as a ratio of the sides of the right-angle triangle. You must have also studied trigonometric identities and applications of trigonometric ratios.

In this chapter, you will extrapolate the concepts of trigonometry ratios to trigonometry functions and study their properties.


Trigonometric Functions

Trigonometry functions also known as circular functions and states the relationship between sides and angles of a right-angle triangle. It implies that the relationship between sides and angle of a right angle triangle is derived by these trigonometric functions. The angles of sine, cosine, and tangent are the primary classification of trigonometric functions. And, the other three functions such as cotangent, secant, and cosecant are derived from the primary trigonometric functions. There exists an inverse trigonometric function for each of the above-mentioned trigonometry functions.


Topic and Subtopics Covered in Class 11 Chapter 3 Trigonometric Functions

Let us know the different topics and subtopics covered in Class 11 Chapter 3 Trigonometric Functions.

3.1: Introduction to Chapter

3.2: Angles

3.2.1: Degree Measure

3.2.2: Radian Measure

3.2.3: Relation between radian and real numbers

3.2.4: Relation between degree and radian

3.3: Trigonometric Functions

3.3.1: Sign of Trigonometric Functions

3.3.2: Domain And Range of Trigonometric Functions

3.4: Trigonometric Functions of Sum and Difference of Two Angles

3.5: Trigonometric Equations

Download free Trigonometric Functions Class 11 Notes pdf now to get brief information on all the topics and subtopics covered in the chapter. With the help of these revision notes, you will understand all the above-discussed topics in a better way as these notes are properly arranged for easy preparation of the chapter. These revision notes are of utmost importance to refer while preparing for the exam. So download it now and minimize your stress.


Benefits of by Vedantu Class 11 Maths Notes Chapter 3

Some of the benefits of Class 11 Maths Notes Chapter 3 offered by Vedantu are discussed below:

  • Class 11 Maths Notes Chapter 3 provides an outline of the chapter in a short and precise manner.

  • Students can easily revise the important formulas and theorems related to the trigonometric function quickly and efficiently.

  • Students can save their valuable time by referring to the Mathematics notes for Class 11 Chapter 3.

  • Students can immediately recall all the important concepts of the chapter just by having a look at the revision notes.

  • Students can use the Class 11 Maths Notes Chapter 3 to revise the topic trigonometry rigorously just before the exam.

FAQs on Trigonometric Functions Class 11 Notes CBSE Maths Chapter 3 [Free PDF Download]

1. Name the Six Trigonometric Functions?

The six trigonometric functions are sine, cosine, tan, cosec, sec, and cot.

2. Name the Three Basic Trigonometric Functions?

The three basic trigonometric functions are Sine, Cosine, and Tangent.

3. What are the Different Formulas of Trigonometric Functions?

The different formulas of trigonometric functions are discussed below:

Sin λ = Opposite Side of angle λ / Hypotenuse Side of angle λ.

Cos λ = Adjacent Side of angle λ / Hypotenuse Side of angle λ.

Tan λ = Opposite Side of angle λ / Adjacent Side of angle λ.

Cot λ = Adjacent Side of angle λ / Opposite Side of angle λ.

Sec λ = Hypotenuse Side of angle λ / Adjacent Side of angle λ

Cosec λ = Hypotenuse Side of angle λ / Opposite Side of angle λ.

4. Calculate the Value of Sin λ, Cos λ, and Tan λ, if λ = 30 Degrees?

If the value of = 30 degrees, then,

Sin λ = Sin 30° = ½

Cos λ = Cos 30° = √3/2

Tan λ = Tan 30° = 1/√3

5. Where can I download the latest Chapter 3 Trigonometry notes of Class 11 Maths?

You can find Chapter 3 Trigonometry of Class 11 Maths Revision Notes online on Vedantu. This learning app focuses on helping students clear their concepts of Chapter 3 and also provides you with the revision notes in pdf format for them to study well and ace their final exams. To download the Class 11 Maths Chapter 3 notes, follow these steps -

  • Click here.

  • The page with the Revision Notes of Chapter 3 of Class 11 Maths will open up.

  • To download the pdf, click on the download pdf option.

  • The revision notes will get saved on your device. You can access these notes offline.

6. Can I download the Notes of  Chapter 3 Trigonometry of Class 11 Maths in PDF?

Yes, you can download the notes for Chapter 3 Trigonometry of Class 11 Maths as a PDF. Students don’t need to worry about writing the perfect answers in their exams as the revision notes prepared by Vedantu are just a click away. Vedantu provides good quality, informative and well-structured revision notes. You can sit at home and utilise all the benefits offered by Vedantu by downloading the notes for your reference.


These solutions are available on Vedantu's official website(vedantu.com) and mobile app free of cost.

7. What are the topics in Chapter 3 Trigonometry of Class 11 Maths?

Chapter 3 Trigonometry of Class 11 Maths deals with the various trigonometric functions like sin, cos, tan and firstly gives a brief introduction of the chapter. The topics included in this chapter are the angles, the measure for radian and degree of the functions, the relation between the both, the sign of the trigonometric functions, their sum and differences, the equations relating to it and the relationship between real numbers and the radian values. All the topics and sub-topics are important for you to score good marks in exams.

8. What are trigonometric functions according to Chapter 3 Trigonometry of Class 11 Maths?

When you study Chapter 3 Trigonometry of Class 11 Maths, you will firstly have to keep clear concepts regarding the topics included in this chapter. So to begin with you will have to understand exactly the functions of trigonometry. These are used to determine the relationship between the angles of a triangle with the sides of that same right angled triangle. Another name for these trigonometric functions are circular functions.

9. What are the angles of trigonometry according to Chapter 3 Trigonometry of Class 11 Maths?

As you study Chapter 3 Trigonometry of Class 11 Maths, you will come across various new terms that are used in the trigonometry questions. Among these, the main thing is the angles of trigonometry. These are basically functions that help to relate triangle’s sides and angles. These are the sine, cosine and tangent, abbreviated as sin, cos, and tan. The reverse functions or angles are secant, cosecant and cotangent, abbreviated as sec, cosec, and cot.