Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)

ffImage
banner

NCERT Exemplar for Class 11 Maths - Trigonometric Functions - Free PDF Download

Free PDF download of NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions solved by expert Maths teachers of Vedantu as per NCERT (CBSE) Book guidelines. All Chapter 3 - Trigonometric Functions exercise questions with solutions to help you to revise the complete syllabus and score more marks in your examinations.


Trigonometry comes with different real-time applications. This subject is popular for resolving distance and height problems. This specific chapter offers a complete introduction to the basic properties as well as evaluates trigonometric questions and functions. Vedantu provides answers to the students according to  NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric. 

Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science

Access NCERT Exemplar Solutions for CBSE Class 11 Mathematics Chapter 3: Trigonometric Functions (Examples, Easy Methods and Step by Step Solutions)

Examples

Short Answer Type

Example 1: A circular wire of radius 3cm is cut and bent so as to lie along the circumference of a hoop whose radius is  48cm . Find the angle in degrees which is subtended at the centre of hoop.

Ans: Given that, radius of circular wire = 3cm 

When it is cut then its length becomes 2π×3 = 6π 

Again, it is being placed along a circular hoop of radius 48cm

The length (s) of the arc = 6π

Radius of circle, r=48cm 

Therefore, the angle θ (in radian) subtended by the arc at the centre of circle is given by

θ=ArcRadius 

θ=6π48

θ=π8

θ=22.5


Example 2: If A=cos2θ+sin4θ for all values of θ, then prove that 34A1

Ans: Given that, A=cos2θ+sin4θ 

A=cos2θ+sin2θsin2θcos2θ+sin2θ

We know that sin2θ+cos2θ=1. Hence, we get

A=cos2θ+sin2θsin2θ1.......(i)

Now, A=cos2θ+sin4θ

We know that sin2θ+cos2θ=1. So, we can write above written equation as,

A=(1sin2θ)+sin4θ

A=sin4θsin2θ+1

Add 14 from RHS and subtract 14 from the RHS

A=sin4θsin2θ+14+114

A=(sin2θ12)2+414

A=(sin2θ12)2+34

Therefore, A=(sin2θ12)2+3434......(ii)

Thus, from equation (i) and (ii), we get

34A1


Example 3: Find the value of 3cosec20sec20 

Ans: We have, 3cosec20sec20

We can also write it as,

3sin201cos20

3cos20sin20sin20cos20

Multiply and divide numerator by 2 

2(32cos2012sin20)sin20cos20

We know that 32=sin60 and 12=cos60. So, we can write above-written expression as,

2(sin60cos20cos60sin20)sin20cos20

We know that sin(AB)=sinAcosBcosAsinB. Therefore, we get

2sin(6020)sin20cos20

Multiply and divide the above-written expression by 2 

2×2sin(6020)2sin20cos20

We know that 2sinxcosx=sin2x. Therefore, we get

4sin(6020)sin2×20

4sin40sin40

4


Example 4: If θ lies in the second quadrant, then show that 1sinθ1+sinθ+1+sinθ1sinθ=2secθ 

Ans: We have, 1sinθ1+sinθ+1+sinθ1sinθ=2secθ

Take LHS,

1sinθ1+sinθ+1+sinθ1sinθ

(1sinθ)(1sinθ)(1+sinθ)(1sinθ)+(1+sinθ)(1+sinθ)(1+sinθ)(1+sinθ)

(1sinθ)2(12sin2θ)+(1+sinθ)2(12sin2θ)

(1sinθ)(12sin2θ)+(1+sinθ)(12sin2θ)

1sinθ+1+sinθ(12sin2θ)

2(12sin2θ)

We know that sin2θ+cos2θ=1. Therefore, we get

2cosθ

2|cosθ|

(Since α2=|α| for every real number α )

Given that, θ lies in second quadrant and we know that in second quadrant cos is negative. Therefore, we get

2cosθ

2secθ

Hence proved


Example 5: Find the value of tan9tan27tan63+tan81 

Ans: We have, tan9tan27tan63+tan81

tan9+tan81tan27tan63

tan9+tan(909)tan27tan(9027)

We know that tan(90θ)=cosθ. Therefore, we get

tan9+cot9tan27cot27

tan9+cot9(tan27+cot27)

Now, we will write the above-written expression in terms of sine and cosine.

sin9cos9+cos9sin9(sin27cos27+cos27sin27)

Take LCM

sin9×sin9+cos9×cos9sin9cos9(sin27×sin27+cos27×cos27sin27cos27)

sin29+cos29sin9cos9(sin227+cos227sin27cos27)

We know that sin2θ+cos2θ=1. Therefore, we get

1sin9cos91sin27cos27

Multiply and divide the expression by 2 

22sin9cos922sin27cos27

We know that 2sinxcosx=sin2x. Therefore, we get

2sin182sin54

We know that sin18=514 and sin54=5+14. Therefore, we get

2×4512×45+1

8(5+1)8(51)51

85+885+84

164

4


Example 6: Prove that sec8θ1sec4θ1=tan8θtan2θ 

Ans: We have, LHS sec8θ1sec4θ1

Write the above-written expression in terms of cosine 

1cos8θ11cos4θ1

1cos8θcos8θ1cos4θcos4θ

1cos8θcos8θ×cos4θ1cos4θ

(1cos8θ)cos4θcos8θ(1cos4θ)

We know that 1cos2x=2sin2x. Therefore, we get

2sin24θcos4θcos8θ2sin22θ

sin4θ(2sin4θcos4θ)2cos8θsin22θ

We know that 2sinxcosx=sin2x. Therefore, we get

sin4θsin8θ2cos8θsin22θ

We know that 2sinxcosx=sin2x. Therefore, we get

2sin2θcos2θsin8θ2cos8θsin22θ

On canceling common terms, we get

sin8θcos2θcos8θsin2θ

tan8θtan2θ

Hence proved


Example 7: Solve the equation sinθ+sin3θ+sin5θ=0 

Ans: We have, sinθ+sin3θ+sin5θ=0

(sin5θ+sinθ)+sin3θ=0

We know that sinA+sinB=2sinA+B2cosAB2. Therefore, we get

(2sin5θ+θ2cos5θθ2)+sin3θ=0

2sin3θcos2θ+sin3θ=0

sin3θ(2cos2θ+1)=0

sin3θ=0 or 2cos2θ+1=0

sin3θ=0 or cos2θ=12

Now, sin3θ=0 

3θ=nπ,nZ

θ=nπ3,nZ

And, cos2θ=12

cos2θ=cos(ππ3)

cos2θ=cos(3ππ3)

cos2θ=cos(2π3)

We know that if cosθ=cosα, then θ=2mπ±α. Therefore, we get

2θ=2mπ±2π3,mZ

θ=mπ±π3,mZ

Hence, the general solution of the given equation is θ=nπ3,nZ or, θ=mπ±π3,mZ.


Example 8: Solve 2tan2x+sec2x=2 for 0x2π 

Ans: We have, 2tan2x+sec2x=2

We know that sec2θ=1+tan2θ. Therefore, we get

2tan2x+1+tan2x=2

3tan2x=21

3tan2x=1

tan2x=13

(tanx)2=(13)2

(tanx)2=(tanπ6)2

tan2x=tan2π6

We know that if tan2θ=tan2α, then θ=nπ±α, nZ.

x=nπ±π6

Therefore, possible solutions are π6, 5π6, 7π6, 11π6 where 0x2π.


Long Answer Type

Example 9: Find the value of (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8) 

Ans: We have, (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)

(1+cosπ8)(1+cos3π8)(1+cos(π3π8))(1+cos(ππ8))

We know that cos(πθ)=cosθ. Therefore, we get

(1+cosπ8)(1+cos3π8)(1cos3π8)(1cosπ8)

(1cos2π8)(1cos23π8)

We know that sin2θ=1cos2θ. Therefore, we get

sin2π8sin23π8

Multiply and divide the above written expression by 4.

14(2sin2π8)(2sin23π8)

We know that 1cos2A=2sin2A. Therefore, we get

14(1cosπ4)(1cos3π4)

14(112)(1+12)

14(12(12)2)

14(112)

14(12)

18


Example 10: If xcosθ=ycos(θ+2π3)=zcos(θ+4π3), then find the value of xy+yz+zx 

Ans: Note that xy+yz+zx=xyz(1x+1y+1z) 

Given that, xcosθ=ycos(θ+2π3)=zcos(θ+4π3)

Let xcosθ=ycos(θ+2π3)=zcos(θ+4π3)=k

Then, x=kcosθ, y=kcos(θ+2π3) and z=kcos(θ+4π3) 

Now, we have 

1x+1y+1z=1kcosθ+1kcos(θ+2π3)+1kcos(θ+4π3) 

1x+1y+1z=cosθk+cos(θ+2π3)k+cos(θ+4π3)k

1x+1y+1z=1k[cosθ+cos(θ+2π3)+cos(θ+4π3)]

We know that cos(A+B)=cosAcosBsinAsinB. Therefore, we get

1x+1y+1z=1k[cosθ+cosθcos2π3sinθsin2π3+cosθcos4π3sinθsin4π3]

1x+1y+1z=1k[cosθ+cosθ(12)sinθ(32)+cosθ(12)sinθ(32)]

1x+1y+1z=1k[cosθ12cosθ32sinθ12cosθ+32sinθ]

1x+1y+1z=1k[cosθcosθ32sinθ+32sinθ]

1x+1y+1z=1k(0)

1x+1y+1z=0

xy+yz+zx=xyz(0)

xy+yz+zx=0


Example 11: If α and β are the solutions of the equation atanθ+bsecθ=c, then show that tan(α+β)=2aca2c2.

Ans: Given that, atanθ+bsecθ=c

Now, we will write the above written equation in terms of sine and cosine.

asinθcosθ+b1cosθ=c

asinθ+bcosθ=c

asinθ+b=ccosθ

We know that sinθ=2tanθ21+tan2θ2 and cosθ=1tan2θ21+tan2θ2. Therefore, we get

a(2tanθ2)1+tan2θ2+b=c(1tan2θ2)1+tan2θ2

a(2tanθ2)+b(1+tan2θ2)1+tan2θ2=c(1tan2θ2)1+tan2θ2

2atanθ2+b(1+tan2θ2)=c(1tan2θ2)

2atanθ2+b+btan2θ2=cctan2θ2

2atanθ2+btan2θ2+ctan2θ2+bc=0

(b+c)tan2θ2+2atanθ2+bc=0

Above written equation is quadratic in tanθ2 and hence tanα2 and tanβ2 are the roots of this equation.

We know that if the roots of the quadratic equation ax2+bx+c=0 are α and β. Then we have, α+β=ba and αβ=ca. Therefore, we get

tanα2+tanβ2=2ab+c and tanα2tanβ2=bcb+c 

We know that tan(x+y)=tanx+tany1tanxtany. Therefore, we get

tan(α2+β2)=tanα2+tanβ21tanα2tanβ2

On substituting the values, we get

tan(α2+β2)=2ab+c1(bcb+c)

tan(α2+β2)=2ab+cb+cb+cb+c

tan(α2+β2)=2a2c

tan(α+β2)=ac......(i)

We know that tan2x=2tanx1tan2x. Thus, we have

tan2(α+β2)=2tan(α+β2)1tan2(α+β2)

On substituting the values, we get

tan(α+β)=2(ac)1(ac)2

tan(α+β)=2acc2a2c2

tan(α+β)=2ac×c2c2a2

tan(α+β)=2acc2a2

tan(α+β)=2aca2c2

Hence proved


Example 12: Show that 2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)=cos2α 

Ans: We have LHS, 2sin2β+4cos(α+β)sinαsinβ+cos2(α+β)

2sin2β+4cos(α+β)sinαsinβ+cos(2α+2β)

We know that cos(A+B)=cosAcosBsinAsinB. Therefore, we get

2sin2β+4(cosαcosβsinαsinβ)sinαsinβ+(cos2αcos2βsin2αsin2β)

2sin2β+4sinαcosαsinβcosβ4sin2αsin2β+cos2αcos2βsin2αsin2β

We know that 2sinxcosx=sin2x. Therefore, we get

2sin2β+sin2αsin2β4sin2αsin2β+cos2αcos2βsin2αsin2β

2sin2β4sin2αsin2β+cos2αcos2β

We can also the above written expression as,

2sin2β(2sin2α)(2sin2β)+cos2αcos2β

We know that 2sin2A=1cos2A. Therefore, we get

(1cos2β)(1cos2α)(1cos2β)+cos2αcos2β

1cos2β(1cos2βcos2α+cos2βcos2α)+cos2αcos2β

1cos2β1+cos2β+cos2αcos2βcos2α+cos2αcos2β

cos2α 

Hence proved


Example 13: If an angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and ϕ is their difference, then show that sinθ=k+1k1sinϕ.

Ans: Let θ=α+β. Then tanα=ktanβ.

tanαtanβ=k1 

Now, we will apply componendo and dividend 

tanα+tanβtanαtanβ=k+1k1

Now, we will write the above written expression in terms of sine and cosine 

sinαcosα+sinβcosβsinαcosαsinβcosβ=k+1k1

sinαcosβ+cosαsinβcosαcosβsinαcosβcosαsinβcosαcosβ=k+1k1

sinαcosβ+cosαsinβsinαcosβcosαsinβ=k+1k1

We know that sin(A+B)=sinAcosB+cosAsinB and sin(AB)=sinAcosBcosAsinB. Therefore, we get

sin(α+β)sin(αβ)=k+1k1

Given that, αβ=ϕ and α+β=θ. Therefore, we get

sinθsinϕ=k+1k1

sinθ=k+1k1sinϕ

Hence proved


Example 14: Solve 3cosθ+sinθ=2.

Ans: We have equation, 3cosθ+sinθ=2

Divide the equation by 2 

32cosθ+12sinθ=22

32cosθ+12sinθ=12

We know that cosπ6=32, cosπ4=12and sinπ6=12. So, we can written above-written equation as

cosπ6cosθ+sinπ6sinθ=cosπ4

cosθcosπ6+sinθsinπ6=cosπ4

We know that cos(xy)=cosxcosy+sinxsiny. Therefore, we get

cos(θπ6)=cosπ4

We know that when cosθ=cosα, then θ=2nπ±α, where nZ.

θπ6=2nπ±π4

θ=2nπ±π4+π6

Hence, the solutions are θ=2nπ+π4+π6 and θ=2nππ4+π6

i.e., θ=2nπ+5π12 and θ=2nππ12


Objective Type Questions

Choose the correct answer from the given four options against each of the examples 15 to 19.

Example 15: If tanθ=43, then sinθ is

a) 45 but not 45

 b) 45 or 45

c) 45 but not 45

d) None of these

Ans: The correct answer is option (b) 45 or 45

Given that, tanθ=43=PB.

By Pythagoras theorem, we have

H2=P2+B2 

H2=42+32

(Here, we have taken positive value of perpendicular because length can’t be negative)

H2=16+9

H2=25

H=5

Since tanθ=43 is negative, θ lies either in second quadrant or in fourth quadrant. 

We know that sinθ=PH. Therefore, we get

If θ lies in second quadrant, sinθ=45 and if θ lies in fourth quadrant, sinθ=45.

Hence, the required answer is (b) 45 or 45


Example 16: If sinθ and cosθ are the roots of the equation ax2bx+c=0, then a, b and c satisfy the relation.

a) a2+b2+2ac=0

b) a2b2+2ac=0

c) a2+c2+2ab=0

d) a2b22ac=0

Ans: The correct answer is option (b) a2b2+2ac=0

Given that, sinθ and cosθ are the roots of the equation ax2bx+c=0.

We know that if the roots of the quadratic equation ax2+bx+c=0 are α and β. Then we have, α+β=ba and αβ=ca. Therefore, we get

sinθ+cosθ=ba...(i) and sinθcosθ=ca.....(ii)

On squaring both the sides in equation (i), we get

sin2θ+cos2θ+2sinθcosθ=b2a2

We have, sinθcosθ=ca and we know that sin2θ+cos2θ=1. Therefore, we get

1+2ca=b2a2

a+2ca=b2a2

a+2c1=b2a

On cross multiplication, we get

a2+2ac=b2

a2b2+2ac=0


Example 17: The greatest value of sinxcosx is

a) 1

b) 2

c) 2

d) 12

Ans: The correct answer is option (d) 12 

We have, sinxcosx

Multiply and divide the expression by 2  

12×2sinxcosx

We know that 2sinxcosx=sin2x. Therefore, we get

12×sin2x

We know that, 

1sin2x1 

Divide the expression by 2 

12sin2x212

Hence, the greatest is 12.


Example 18: The value of sin20sin40sin60sin80 is

a) 316

b) 516

c) 316

d) 116

Ans: The correct answer is option (c) 316

sin60sin20sin40sin80

We know that sin60=32. Therefore, we get

32sin20(sin40sin80)

Multiply and divide the expression by 2.

32×12sin20(2sin80sin40)

We know that 2sinAsinB=cos(AB)cos(A+B). Therefore, we get

34sin20(cos40cos120)

34[sin20cos40sin20cos120]

We know that cos120=12. Therefore, we get

34[sin20cos40sin20(12)]

Multiply and divide the expression by 2 

34×2[2sin20cos402sin20(12)]

38[2sin20cos40+sin20]

We know that 2sinAcosB=sin(A+B)+sin(AB). Therefore, we get

38[sin60+sin(20)+sin20]

We know that sin(θ)=sinθ. Therefore, we get

38(32)

316


Example 19: The value of cosπ5cos2π5cos4π5cos8π5 is

a) 116

b) 0

c) 18

d) 116

Ans: The correct answer is option (d) 116 

We have, cosπ5cos2π5cos4π5cos8π5

Multiply the above-written expression by 2sinπ5.

12sinπ52sinπ5cosπ5cos2π5cos4π5cos8π5

We know that 2sinxcosx=sin2x. Therefore, we get

12sinπ5sin2π5cos2π5cos4π5cos8π5

Multiply and divide the expression by 2 

12×2sinπ52sin2π5cos2π5cos4π5cos8π5

We know that 2sinxcosx=sin2x. Therefore, we get

14sinπ5sin4π5cos4π5cos8π5

Multiply and divide the expression by 2 

12×4sinπ52sin4π5cos4π5cos8π5

18sinπ5sin8π5cos8π5

Multiply and divide the expression by 2 

12×8sinπ52sin8π5cos8π5

116sinπ5sin16π5

sin(3π+π5)16sinπ5

sinπ516sinπ5

116


Fill in the blank:

Example 20: If 3tan(θ15)=tan(θ+15), 0<θ<90, then θ = _____.

Ans: Given that, 3tan(θ15)=tan(θ+15)

tan(θ+15)tan(θ15)=31

Now, we will apply componendo and dividendo rule. Therefore, we get

tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=3+131

sin(θ+15)cos(θ+15)+sin(θ15)cos(θ15)sin(θ+15)cos(θ+15)sin(θ15)cos(θ15)=42

sin(θ+15)cos(θ15)+sin(θ15)cos(θ+15)cos(θ+15)cos(θ15)sin(θ+15)cos(θ15)sin(θ15)cos(θ+15)cos(θ+15)cos(θ15)=2

sin(θ+15)cos(θ15)+sin(θ15)cos(θ+15)sin(θ+15)cos(θ15)sin(θ15)cos(θ+15)=2

We know that sin(A+B)=sinAcosB+cosAsinB and sin(AB)=sinAcosBcosAsinB. Therefore, we get

sin(θ+15+θ15)sin(θ+15(θ15))=2

sin2θsin(θ+15θ+15)=2

sin2θsin30=2

We know that sin30=12. Therefore, we get

sin2θ12=2

2sin2θ1=2

sin2θ=1

Given that, 0<θ<90 i.e., 0<θ<π2 

0<2θ<π

sin2θ=sinπ2 

2θ=π2

θ=π4

Or 

θ=45


State whether the following statement is true or false. Justify your answer.

Example 21: “The inequality 2sinθ+2cosθ2112 holds for all real values of θ ”.

Ans: The given statement is true.

Since, 2sinθ and 2cosθ are positive real numbers, so arithmetic mean of these two numbers is greater or equal to their geometric mean.

2sinθ+2cosθ22sinθ×2cosθ

2sinθ+2cosθ22sinθ+cosθ

2sinθ+2cosθ2.2sinθ+cosθ2......(i)

We have, sinθ+cosθ.

Divide and multiply the expression by 2 

2(sinθ×12+cosθ×12) 

We know that sinπ4=12 and cosπ4=12. Therefore, we get

2(sinθcosπ4+cosθsinπ4)

We know that sin(x+y)=sinxcosy+cosxsiny. Therefore, we get

2sin(θ+π4)

Since, 1sin(θ+π4)1

22sin(θ+π4)2

As we solved above, sinθ+cosθ=2sin(θ+π4). Therefore, we get

2sinθ+cosθ2

22sinθ+cosθ222

12sinθ+cosθ212

We have, 2sinθ+2cosθ2.2sinθ+cosθ2......(i)

2sinθ+2cosθ2.212

2sinθ+2cosθ21+(12)

2sinθ+2cosθ2112


State whether the following statement is true or false. Justify your answer.

Example 22: Match each item given under the column C1 to its correct answer given under the column C2.       

         C1                                                                            C2                                                 

a) 1cosxsinx                                                                 (i) cot2x2      

b) 1+cosx1cosx                                                                 (ii) cotx2

c) 1+cosxsinx                                                                  (iii) |cosx+sinx|

d) 1+sin2x                                                              (iv) tanx2

Ans: 

a) 1cosxsinx         

We know that 1cos2A=2sin2A and sin2A=2sinAcosA. Therefore, we get

 2sin2x22sinx2cosx2

sinx2cosx2

tanx2

Hence, (a)(iv).

b) 1+cosx1cosx

We know that 1+cos2A=2cos2A and 1cos2A=2sin2A. Therefore, we get

2cos2x22sin2x2

cot2x2

Hence, (b)(i).

c) 1+cosxsinx

We know that 1+cos2A=2cos2A and sin2A=2sinAcosA. Therefore, we get

2cos2x22sinx2cosx2

cosx2sinx2

cotx2

Hence, (c)(ii)

d) 1+sin2x

We know that sin2A+cos2A=1 and sin2A=2sinAcosA. Therefore, we get

sin2x+cos2x+2sinxcosx

(sinx+cosx)2

|(sinx+cosx)|

|cosx+sinx| 

Hence, (d)(iii).


Exercise 3.3

Short Answer Type

  1. Prove that tanA+secA1tanAsecA+1=1+sinAcosA.

Ans: We need to prove that tanA+secA1tanAsecA+1=1+sinAcosA

L.H.S. = tanA+secA1tanAsecA+1

We know that sec2Atan2A=1. Therefore, we get

tanA+secA(sec2Atan2A)tanAsecA+1

We know that a2b2=(a+b)(ab). Therefore, we get

tanA+secA[(secA+tanA)(secAtanA)]tanAsecA+1

Take secA+tanA as a common term

(secA+tanA)[1(secAtanA)]tanAsecA+1

(secA+tanA)[1secA+tanA]tanAsecA+1

On canceling common term, we get

secA+tanA

Now, we will convert above written expression in terms of sine and cos.

1cosA+sinAcosA

Take LCM

1+sinAcosA

Hence proved.


  1. If 2sinα1+cosα+sinα=y, prove that 1cosα+sinα1+sinα is also equal to y.

Ans: Given, y=2sinα1+cosα+sinα

Let us multiply and divide the above written expression by 1+sinαcosα.

2sinα1+cosα+sinα×1+sinαcosα1+sinαcosα

2sinα(1+sinαcosα)(1+cosα+sinα)(1+sinαcosα)

Now we will apply (a+b)(ab)=a2b2 formula to simplify the denominator.

2sinα(1+sinαcosα)(1+sinα)2cos2α

On expansion using (a+b)2=a2+b2+2ab , we get

2sinα(1+sinαcosα)12+sin2α+2sinαcos2α

2sinα(1+sinαcosα)(12cos2α)+sin2α+2sinα

We know that 1cos2x=sin2x. Therefore, we get

2sinα(1+sinαcosα)sin2α+sin2α+2sinα

2sinα(1+sinαcosα)2sin2α+2sinα

Take 2sinα as a common term

2sinα(1+sinαcosα)2sinα(sinα+1)

On canceling common term, we get

1+sinαcosαsinα+1=y

Hence proved.


  1. If msinθ=nsin(θ+2α), then prove that tan(θ+α)cotα=m+nmn.

Ans: Given, msinθ=nsin(θ+2α)

We can also write it as,

sin(θ+2α)sinθ=mn

Now, we will apply componendo and dividend rule on the above written expression.

sin(θ+2α)+sinθsin(θ+2α)sinθ=m+nmn

We know that sinA+sinB=2sinA+B2.cosAB2 and sinAsinB=2cosA+B2.sinAB2. Therefore, we get

2sin(θ+2α+θ2).cos(θ+2αθ2)2cos(θ+2α+θ2).sin(θ+2αθ2)=m+nmn

2sin(2θ+2α2).cos(2α2)2cos(2θ+2α2).sin(2α2)=m+nmn

On simplification, we get

2sin(θ+α).cos(α)2cos(θ+α).sin(α)=m+nmn

Now we will write above written expression in terms of tan and cot.

tan(θ+α).cotα=m+nmn

Hence proved.


  1. If cos(α+β)=45 and sin(αβ)=513, where α lie between 0 and π4, find the value of tan2α.

Ans: Given, cos(α+β)=45 and sin(αβ)=513

At first we will find the value tan(α+β) and tan(αβ).

For value of tan(α+β), we have

cos(α+β)=45=BH

seo images


We know that H2=P2+B2 

52=P2+42

P2=5242=2516

P2=9

P=3

We know that tanx=PB. Therefore, we get

tan(α+β)=34

For value of tan(αβ), we have

sin(αβ)=513=PH

seo images



We know that H2=P2+B2 

132=52+B2

B2=13252=16925

B2=144

B=12

We know that tanx=PB. Therefore, we get

tan(αβ)=512

As here we need to find value of tan2α, we can write it as

tan2α=[α+β+αβ]

tan2α=[(α+β)+(αβ)]

We know that tan(x+y)=tanx+tany1tanxtany. Therefore, we get

tan2α=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)

tan2α=34+512134×512

tan2α=9+512481548

tan2α=1412×4833

tan2α=5633

This is our required answer.


  1. If tanx=ba, then find the value of a+bab+aba+b.

Ans: Given, tanx=ba and we need to find the value of a+bab+aba+b.

Let us first take LCM of the above written expression

a+b×a+b+ab×abab×a+b

On multiplication of terms, we get

(a+b)2+(ab)2(ab)(a+b)

As we know (ab)(a+b)=a2+b2. Therefore, we get

a+b+aba2b2

2aa1b2a2

We are given that tanx=ba. Therefore, we get

21tan2x

We can also write it as,

21sin2xcos2x

On taking LCM, we get

2cos2xsin2xcos2x

We know that cos2xsin2x=cos2x. Therefore, we get

2cos2xcosx

2cosxcos2x

Hence, a+bab+aba+b=2cosxcos2x.


  1. Prove that cosθcosθ2cos3θcos9θ2=sin4θsin(7θ2).

Ans: We need to prove that cosθcosθ2cos3θcos9θ2=sin4θsin(7θ2)

Let us start to solve L.H.S. = cosθcosθ2cos3θcos9θ2

On multiplication and division of the above written expression by 2, we get

12[2cosθcosθ2]12[2cos3θcos9θ2]

Now, we will apply cos(A+B)+cos(AB)=2cosAcosB formula.

12[cos(θ+θ2)+cos(θθ2)]12[cos(3θ+9θ2)+cos(3θ9θ2)]

On simplification, we get

12[cos3θ2+cosθ2]12[cos15θ2+cos(3θ2)]

12[cos3θ2+cosθ2cos15θ2cos(3θ2)]

As we know cos(θ)=cosθ. Therefore, we get

12[cos3θ2+cosθ2cos15θ2cos3θ2]

12[cosθ2cos15θ2]

We know that cosCcosD=2sin(C+D2)sin(CD2). Therefore, we get

12[2sin(θ2+15θ22)sin(θ215θ22)]

sin(16θ22)sin(14θ22)

sin(4θ)sin(7θ2)

As we know sin(θ)=sinθ. Therefore, we get

sin(4θ)sin(7θ2)

Hence proved.


  1. If acosθ+bsinθ=m and asinθbcosθ=n, then show that a2+b2=m2+n2.

Ans: Given, acosθ+bsinθ=m and asinθbcosθ=n

acosθ+bsinθ=m

On squaring both the side, we get

(acosθ+bsinθ)2=m2

a2cos2θ+b2sin2θ+2absinθcosθ=m2.....(i)

asinθbcosθ=n

On squaring both the side, we get

(asinθbcosθ)2=n2

a2sin2θ+b2cos2θ2absinθcosθ=n2.....(ii)

Add equation (i) and (ii).

m2+n2=a2cos2θ+b2sin2θ+2absinθcosθ+a2sin2θ+b2cos2θ2absinθcosθ

m2+n2=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)

As we know sin2θ+cos2θ=1. Therefore, we get

m2+n2=a2(1)+b2(1)

m2+n2=a2+b2

Hence proved.


  1. Find the value of tan2030.

Ans: We need to find the value of tan2030.

Let 2233=θ2 

θ=45 

tan2030=tanθ2

We know that tanx=sinxcosx. Therefore, we get

tan2030=sinθ2cosθ2

Multiply numerator and denominator by 2cosθ2 

tan2030=2sinθ2cosθ22cosθ2cosθ2

tan2030=2sinθ2cosθ22cos2θ2

We know that sinx=2sinx2cosx2 and 2cos2x2=1+cosx. Therefore, we get

tan2030=sinθ1+cosθ

Put θ=45 

tan2030=sin451+cos45

Substitute value of sin45=12 and cos45=12

tan2030=121+12

tan2030=122+12

tan2030=12+1

Multiply numerator and denominator by 21 

tan2030=12+1×2121

tan2030=2121

tan2030=21

This is our required answer.


  1. Prove that sin4A=4sinAcos3A4cosAsin3A.

Ans: We need to prove that sin4A=4sinAcos3A4cosAsin3A

We can write sin4A=sin(A+3A)

As we know sin(A+B)=sinAcosB.cosAsinB. Therefore, we get

sin4A=sinAcos3A+cosAsin3A

As we know cos3A=4cos3A3cosA and sin3A=3sinA4sin3A. Therefore, we get

sin4A=sinA(4cos3A3cosA)+cosA(3sinA4sin3A)

On multiplication of terms, we get

sin4A=4sinAcos3A3sinAcosA+3cosAsinA4cosAsin3A

sin4A=4sinAcos3A4cosAsin3A

Hence proved.


  1.  If tanθ+sinθ=m and tanθsinθ=n, then prove that m2n2=4sinθtanθ.

Ans: Given, tanθ+sinθ=m and tanθsinθ=n

tanθ+sinθ=m

On squaring both the sides, we get

(tanθ+sinθ)2=m2

As we know (a+b)2=a2+b2+2ab. Therefore, we get

tan2θ+sin2θ+2tanθsinθ=m2....(i)

tanθsinθ=n

On squaring both the sides, we get

(tanθsinθ)2=n2

As we know (a+b)2=a2+b2+2ab. Therefore, we get

tan2θ+sin2θ2tanθsinθ=n2....(ii)

Now, we will subtract equation (ii) from (i).

m2n2=tan2θ+sin2θ+2tanθsinθ(tan2θ+sin2θ2tanθsinθ)

m2n2=tan2θ+sin2θ+2tanθsinθtan2θsin2θ+2tanθsinθ

On subtraction of terms, we get

m2n2=2tanθsinθ+2tanθsinθ

m2n2=4sinθtanθ

Hence proved.


  1.  If tan(A+B)=p, tan(AB)=q, then show that tan2A=p+q1pq.

Ans: Given, tan(A+B)=p and tan(AB)=q

Let us start with LHS of tan2A=p+q1pq.

tan2A=tan(A+B+AB)

This can also be written as,

tan2A=tan[(A+B)+(AB)]

We know that tan(x+y)=tanx+tany1tanxtany. Now, we will apply this formula on the RHS.

tan2A=tan(A+B)+tan(AB)1tan(A+B)tan(AB)

We are given that tan(A+B)=p and tan(AB)=q. Therefore, we get

tan2A=p+q1pq

Hence proved.


  1.  If cosα+cosβ=0=sinα+sinβ, then prove that cos2α+cos2β=2cos(α+β).

Ans: Given, cosα+cosβ=0 and sinα+sinβ=0.

(cosα+cosβ)2=0

On squaring both the sides, we get

cos2α+cos2β+2cosαcosβ=0........(1)

sinα+sinβ=0

On squaring both the sides, we get

(sinα+sinβ)2=0

sin2α+sin2β+2sinαsinβ=0.......(2)

Now, we will subtract equation (2) from (1).cos2α+cos2β+2cosαcosβ(sin2α+sin2β+2sinαsinβ)=0

cos2α+cos2β+2cosαcosβsin2αsin2β2sinαsinβ=0

cos2αsin2α+cos2βsin2β+2cosαcosβ2sinαsinβ=0

We know that cos2xsin2x=cos2x. Therefore, we get

cos2α+cos2β+2(cosαcosβsinαsinβ)=0

We know that cos(A+B)=cosAcosBsinAsinB. Therefore, we get

cos2α+cos2β+2cos(α+β)=0

cos2α+cos2β=2cos(α+β)

Hence proved.


  1.  If sin(x+y)sin(xy)=a+bab, then show that tanxtany=ab.

Ans: Given, sin(x+y)sin(xy)=a+bab

We will apply componendo and dividend rule on the above written expression.

sin(x+y)+sin(xy)sin(x+y)sin(xy)=a+b+a+ba+b(ab)

We know that sinA+sinB=2sinA+B2.cosAB2 and sinAsinB=2cosA+B2.sinAB2. Therefore, we get

2sin(x+y+xy2)cos(x+yx+y2)2cos(x+y+xy2)sin(x+yx+y2)=a+b+a+ba+ba+b

On simplification, we get

2sin(2x2)cos(2y2)2cos(2x2)sin(2y2)=2(a+b)2b

On canceling common terms, we get

sinxcosycosxsiny=a+bb

Now we will write above written expression in terms of tan and cot.

tanx.coty=a+bb

tanxtany=a+bb

Hence proved.


  1.  If tanθ=sinαcosαsinα+cosα, then show that sinα+cosα=2cosθ.

Ans: Given, tanθ=sinαcosαsinα+cosα

Divide numerator and denominator of RHS by cosα.

tanθ=sinαcosαcosαsinα+cosαcosα

tanθ=sinαcosαcosαcosαsinαcosα+cosαcosα

As we know sinxcosx=tanx. Therefore, we get

tanθ=tanα1tanα+1

We know that tanπ4=1. So, we can write above written equation as,

tanθ=tanαtanπ4tanα+tanπ4

We know that tan(xy)=tanxtany1+tanxtany. Therefore, we get

tanθ=tan(απ4)

θ=απ4

cosθ=cos(απ4)

We know that cos(AB)=cosA.cosB+sinA.sinB. Therefore, we get

cosθ=cosα.cosπ4+sinα.sinπ4

Substitute values of cosπ4=12 and sinπ4=12

cosθ=cosα.12+sinα.12

Multiply both sides by 2.

2cosθ=cosα+sinα

sinα+cosα=2cosθ

Hence proved.


  1.  If sinθ+cosθ=1, then find the general value of θ.

Ans: We have, sinθ+cosθ=1

Divide both sides by 2.

12sinθ+12cosθ=12 

We know that 12=sinπ4 and 12=cosπ4. Therefore, we get

sinπ4sinθ+cosπ4cosθ=12

We know that cos(AB)=cosAcosB+sinAsinB. So, we can write above-written expression as

cos(θπ4)=cosπ4

We know that if cosθ=cosα, then θ=2nπ±α. Therefore, we get

θπ4=2nπ±π4,nZ

Transport π4 to RHS

θ=2nπ±π4π4

θ=2nπ+π4+π4 or θ=2nππ4+π4

θ=2nπ+π2 or θ=2nπ,nZ

Therefore, the general values of θ are 2nπ+π2 and 2nπ where nZ.


  1.  Find the most general value of θ satisfying the equation tanθ=1 and cosθ=12.

Ans: We have, tanθ=1 and cosθ=12.

As we can see tanθ is negative and cosθ. It means θ lies in the fourth quadrant.

We have, tanθ=1

tanθ=tan(π4)

tanθ=tan(π4)

We know that tan(2πx)=tanx. So, we can write above written expression as

tanθ=tan(2ππ4)

tanθ=tan(7π4)

θ=7π4

We have, cosθ=12

cosθ=cosπ4

We know that cos(2πx)=cosx. So, we can write above written expression as

cosθ=cos(2ππ4)

cosθ=cos7π4

θ=7π4

Therefore, the general solution is θ=2nπ+7π4,nZ.


  1.  If cotθ+tanθ=2cosecθ, then find the general value of θ.

Ans: Given, cotθ+tanθ=2cosecθ

Let us write above written expression in terms of sin and cos.

cosθsinθ+sinθcosθ=2sinθ

Take LCM

cos2θ+sin2θsinθcosθ=2sinθ

We know that sin2θ+cos2θ=1. Therefore, we get

1sinθcosθ=2sinθ

On cross multiplication, we get

1sinθcosθ=2sinθ

2sinθcosθ=sinθ

Transport sinθ to LHS

2sinθcosθsinθ=0

sinθ(2cosθ1)=0

sinθ=0 or 2cosθ1=0

sinθ=0 or cosθ=12

As we have, sinθ=0

θ=nπ,nZ 

As we have, cosθ=12

cosθ=cosπ3 

θ=2nπ±π3 

Therefore, the general value of θ is 2nπ±π3 and nπ, nZ.


  1.  If 2sin2θ=3cosθ, where 0θ2π, then find the value of θ.

Ans: Given, 2sin2θ=3cosθ

We know that sin2x=1cos2x. Therefore, we get

2(1cos2θ)=3cosθ

22cos2θ=3cosθ

2cos2θ+3cosθ2=0

2cos2θ+4cosθcosθ2=0

2cosθ(cosθ+2)1(cosθ+2)=0

(cosθ+2)(2cosθ1)=0

cosθ+2=0 or 2cosθ1=0

cosθ2 [1cosθ1] 

Therefore, 2cosθ1=0

cosθ=12

cosθ=cosπ3 

θ=π3 or 2ππ3

θ=π3 or 5π3 ( As it is mentioned in the question that 0θ2π )

Therefore, the value of θ are π3 and 5π3.


  1.  If secxcos5x+1=0, where 0<xπ2, then find the value of x.

Ans: Given, secxcos5x+1=0

We can also write it as,

1cosxcos5x+1=0

Take LCM

cos5x+cosxcosx=0

cos5x+cosx=0

We know that cosC+cosD=2cos(C+D2)cos(CD2). Therefore, we get

2cos(5x+x2)cos(5xx2)=0

cos(6x2)cos(4x2)=0

cos3x.cos2x=0

cos3x=0 or cos2x=0

3x=π2 or 2x=π2

x=π6 or x=π4

Therefore, the value of x are π6, π4.


Long Answer Type

  1.  If sin(θ+α)=a and sin(θ+β)=b, then prove that cos2(αβ)4abcos(αβ)=12a22b2.

Ans: Given that, sin(θ+α)=a and sin(θ+β)=b.

We know that cosx=1sin2x. Therefore, we get

cos(θ+α)=1(sin(θ+α))2 

cos(θ+α)=1a2

Similarly, 

cos(θ+β)=1(sin(θ+β))2 

cos(θ+β)=1b2

Now, let us find value of cos(αβ).

cos(αβ)=cos[(θ+α)(θ+β)] 

We know that cos(AB)=cosA.cosB+sinA.sinB. Therefore, we get

cos(αβ)=cos(θ+α)cos(θ+β)+sin(θ+α)sin(θ+β)

On substituting the values, we get

cos(αβ)=1a21b2+ab

cos(αβ)=ab+1b2a2+a2b2

Now, we will find the value of cos2(αβ)

We know that cos2A=2cos2A1. Therefore, we get

cos2(αβ)=2cos2(αβ)1

cos2(αβ)=2(ab+1b2a2+a2b2)21

cos2(αβ)=2(a2b2+1b2a2+a2b2+2ab1b2a2+a2b2)1

We have, L.H.S. = cos2(αβ)4abcos(αβ). On substituting the values, we get

2(a2b2+1b2a2+a2b2+2ab1b2a2+a2b2)14ab(ab+1b2a2+a2b2)

2a2b2+22b22a2+2a2b2+4ab1b2a2+a2b214a2b24ab1b2a2+a2b2

4a2b2+12a22b2+4ab1b2a2+a2b24a2b24ab1b2a2+a2b2

On subtraction, we get

12a22b2 

Hence proved.


  1.  If cos(θ+ϕ)=mcos(θϕ), then prove that tanθ=1m1+mcotϕ.

Ans: Given, cos(θ+ϕ)=mcos(θϕ)

We can also write it as,

cos(θ+ϕ)cos(θϕ)=m1

Now, we will apply componendo and dividend rule on the above written expression.

cos(θ+ϕ)+cos(θϕ)cos(θ+ϕ)cos(θϕ)=m+1m1

We know that cosAcosB=2sinA+B2.sinAB2 and cosA+cosB=2cosA+B2.cosAB2. Therefore, we get

2cos(θ+ϕ+θϕ2).cos(θ+ϕθ+ϕ2)2sin(θ+ϕ+θϕ2).sin(θ+ϕθ+ϕ2)=m+1m1

2cos(2θ2).cos(2ϕ2)2sin(2θ2).sin(2ϕ2)=m+1m1

On canceling common terms, we get

cos(θ).cos(ϕ)sin(θ).sin(ϕ)=m+1m1

As we know cosxsinx=cotx. So, we can write above-written equation as,

cotθ.cotϕ=m+1m1

cotϕtanθ=m+1m1

On cross multiplication, we get

tanθ(1+m)=cotϕ(1m)

tanθ=(1m)(1+m)cotϕ

Hence proved.


  1.  Find  the  value  of  the  expression  3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)] 

Ans: Given, 3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)]

We can also write it as,

 3[sin4(3π2α)+sin4(2π+(π+α))]2[sin6(π2+α)+sin6(4π+(πα))]

As we know sin(3π2x)=cosx, sin(2π+x)=sinx, sin(π2+x)=cosx and sin(4π+x)=sinx. Therefore, we get

3[cos4α+sin4(π+α)]2[cos6α+sin6(πα)]

As we know sin(π+α)=sinα and sin(πα)=sinα. Therefore, we get

3[cos4α+sin4α]2[cos6α+sin6α]

3[(cos2α)2+(sin2α)2]2[(cos2α)3+(sin2α)3]..........(i)

As we know (a+b)2=a2+b2+2ab. Therefore, we can write (cos2α)2+(sin2α)2 as (cos2α+sin2α)22cos2αsin2α. From here we can conclude that (cos4α)+(sin4α)=(cos2α+sin2α)22cos2αsin2α..........(ii)

Also, as we know a3+b3=(a+b)(a2+b2ab). Therefore, we can write on expansion of  (cos2α)3+(sin2α)3, we get (cos2α+sin2α)(cos4α+sin4αcos2αsin2α).

Now, we will substitute these value in equation (i).

3[(cos2α+sin2α)22cos2αsin2α]2[(cos2α+sin2α)(cos4α+sin4αcos2αsin2α)]

As we know sin2x+cos2x=1. Therefore, we get

3(12cos2αsin2α)2(cos4α+sin4αcos2αsin2α)

From (ii), we get

3(12cos2αsin2α)2((cos2α+sin2α)22cos2αsin2αcos2αsin2α)

As we know sin2x+cos2x=1. Therefore, we get

3(12cos2αsin2α)2(12cos2αsin2αcos2αsin2α)

3(12cos2αsin2α)2(13cos2αsin2α)

On multiplication, we get

36cos2αsin2α2+6cos2αsin2α

On subtraction, we get

1

Hence, value of 3[sin4(3π2α)+sin4(3π+α)]2[sin6(π2+α)+sin6(5πα)] is 1.


  1.  If acos2θ+bsin2θ=c has α and β as its roots, then prove that tanα+tanβ=2ba+c.

Ans: Given, acos2θ+bsin2θ=c has α and β as its roots.

Let acos2θ+bsin2θ=c be equation (i).

We know that cos2x=1tan2x1+tan2x and  sin2x=2tanx1+tan2x. Therefore, we get

a(1tan2θ1+tan2θ)+b(2tanθ1+tan2θ)=c

Take LCM

a(1tan2θ)+b(2tanθ)1+tan2θ=c

On cross multiplication, we get

a(1tan2θ)+b(2tanθ)=c(1+tan2θ)

On multiplication of terms, we get

aatan2θ+2btanθ=c+ctan2θ

aatan2θ+2btanθcctan2θ=0

Divide whole equation by 1.

a+atan2θ2btanθ+c+ctan2θ=0

(a+c)tan2θ2btanθ+(ca)=0.......(ii)

We are given that α and β are the roots of equation (i). Thus,  tanα and tanβ are the roots of the equation (ii).

As we know sum of roots of a quadratic equation ax2+bx+c=0 is ba. Therefore, we get

tanα+tanβ=(2b)a+c 

tanα+tanβ=2ba+c

Hence proved.


  1.  If x=secϕtanϕ and y=cosecϕ+cotϕ then show that xy+xy+1=0.

Ans: Given, x=secϕtanϕ and y=cosecϕ+cotϕ

We have, L.H.S. = xy+xy+1.

Now, we will substitute the given values in above written expression.

(secϕtanϕ)(cosecϕ+cotϕ)+(secϕtanϕ)(cosecϕ+cotϕ)+1

Now, we will write above written expression in terms of sin and cos.

(1sinϕcosϕ)(1+cosϕsinϕ)+(1sinϕcosϕ)(1+cosϕsinϕ)+1

(1sinϕ)(1+cosϕ)cosϕsinϕ+(sinϕ(1sinϕ)cosϕ(1+cosϕ)cosϕsinϕ)+1

1sinϕ+cosϕsinϕcosϕcosϕsinϕ+(sinϕsin2ϕcosϕcos2ϕcosϕsinϕ)+1

1sinϕ+cosϕsinϕcosϕ+sinϕcosϕ(sin2ϕ+cos2ϕ)+sinϕcosϕcosϕsinϕ

We know that sin2x+cos2x=1. Therefore, we get

11cosϕsinϕ=0

Hence proved.


  1.  If θ lies in the first quadrant and cosθ=817, then find the value of cos(30+θ)+cos(45θ)+cos(120θ).

Ans: Here, we are given that cosθ=817, θ lies in the first quadrant. 

We know that sinx=1cos2x. Therefore, we get

sinθ=1(817)2 

sinθ=164289

sinθ=28964289

sinθ=225289

sinθ=±1517

But θ lies in the first quadrant and in first quadrant sine is positive.

sinθ=1517

We need to find the value of cos(30+θ)+cos(45θ)+cos(120θ).

We know that cos(A+B)=cosAcosBsinAsinB and cos(AB)=cosAcosB+sinAsinB. Therefore, we get

cos30cosθsin30sinθ+cos45cosθ+sin45sinθ+cos120cosθ+sin120sinθ

Substitute value of cos30=32, sin30=12, cos45=12, sin45=12, cos120=12 and sin120=32.

32×cosθ12×sinθ+12×cosθ+12×sinθ12cosθ+32sinθ

32(cosθ+sinθ)12(cosθ+sinθ)+12(cosθ+sinθ)

(3212+12)(cosθ+sinθ)

(312+12)(817+1517)

(31+22)(2317)

2334(31+2)

This is our required answer.


  1.  Find the value of the expression cos4π8+cos43π8+cos45π8+cos47π8.

Ans: Given expression, cos4π8+cos43π8+cos45π8+cos47π8

This can also be written as,

cos4π8+cos43π8+cos4(π3π8)+cos4(ππ8)

We know that cos(πθ)=cosθ. Therefore, we get

cos4π8+cos43π8+cos43π8+cos4π8

(Here, cos43π8, cos4π8 are positive because power is even)

2cos4π8+2cos43π8

2[cos4π8+cos43π8]

2[cos4π8+cos4(π2π8)]

We know that cos(π2θ)=sinθ. Therefore, we get

2[cos4π8+sin4π8]

We know that a2+b2=(a+b)22ab. Therefore, we get

2[(cos2π8+sin2π8)22sin2π8×cos2π8]

2[12sin2π8×cos2π8]

24sin2π8×cos2π8

2(2sinπ8×cosπ8)2

We know that sin2x=2sinxcosx. Therefore, we get

2(sinπ4)2

Substitute sinπ4=12.

2(12)2

212=412

32

Therefore, value of given expression is 32.


  1.  Find the general solution of the equation 5cos2θ+7sin2θ6=0.

Ans: Given, 5cos2θ+7sin2θ6=0

We know that sin2x=1cos2x. Therefore, we get

5cos2θ+7(1cos2x)6=0

5cos2θ+77cos2x6=0

12cos2x=0

2cos2x=1

cos2x=12

cos2x=cosπ4

We know that 1+cos2x=2cos2x. Therefore, we get

1+cos2θ2=1+cos2×π42

1+cos2θ=1+cosπ2

cos2θ=cosπ2

We know that if cosθ=cosα then θ=2nπ±α, nZ

2θ=2nπ±π2

θ=nπ±π4

Therefore, the general solution given equation is θ=nπ±π4 where nZ.


  1.  Find the general solution of the equation sinx3sin2x+sin3x=cosx3cos2x+cos3x.

Ans: Given equation, sinx3sin2x+sin3x=cosx3cos2x+cos3x

(sin3x+sinx)3sin2x=(cos3x+cosx)3cos2x

We know that sinA+sinB=2sinA+B2cosAB2 and cosA+cosB=2cosA+B2cosAB2. Therefore, we get

2sin3x+x2cos3xx23sin2x=2cos3x+x2cos3xx23cos2x

2sin2x.cosx3sin2x=2cos2x.cosx3cos2x

2cosx(sin2xcos2x)=3(sin2xcos2x)

2cosx(sin2xcos2x)3(sin2xcos2x)=0

(sin2xcos2x)(2cosx3)=0

sin2xcos2x=0 or 2cosx30 ( 1cosx1 )

sin2x=cos2x

sin2xcos2x=1

tan2x=1

We know that if tanθ=tanα then θ=nπ+α, nZ

tan2x=tanπ4

2x=nπ+π4

x=nπ2+π8

Therefore, the general solution given equation is x=nπ2+π8 where nZ.


  1.  Find the general solution of the equation (31)cosθ+(3+1)sinθ=2.

Ans: Given, (31)cosθ+(3+1)sinθ=2

Put 31=rsinα......(i) and 3+1=rcosα......(ii)

On squaring and adding both the sides, we get

(rsinα)2+(rcosα)2=(31)2+(3+1)2

r2sin2α+r2cos2α=3+123+3+1+23

r2(sin2α+cos2α)=8

We know that sin2x+cos2x=1. Therefore, we get

r2=8

r=22

The given equation can be written as,

rsinα.cosθ+rcosα.sinθ=2

r(sinα.cosθ+cosα.sinθ)=2

We know that sin(A+B)=sinAcosB+cosAsinB. Therefore, we get

22sin(α+θ)=2

2sin(α+θ)=1

sin(α+θ)=12

sin(α+θ)=sinπ4

We know that if sinθ=sinα then θ=nπ+(1)nα, nZ

α+θ=nπ+(1)n.π4.......(iii)

We have, rsinαrcosα=313+1 from equation (i) and (ii).

This can also be written as, tanα=311+3.1

We know that tanπ3=3 and tanπ4=1. Therefore, we get

tanα=tanπ3tanπ41+tanπ3.tanπ4

We know that tan(xy)=tanxtany1+tanx.tany. Therefore, we get

tanα=tan(π3π4)

tanα=tanπ12

α=π12

Now, we will substitute value of α, in equation (iii).

π12+θ=nπ+(1)n.π4

θ=nπ+(1)n.π4π12

Therefore, the general solution given equation is θ=nπ+(1)n.π4π12 where nZ.


OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given options in the exercises 30 to 59.

  1.  If sinθ+cosecθ=2, then sin2θ+cosec2θ is equal to

  1. 1 

  2. 4 

  3. 2 

  4. None of these

Ans: Given, sinθ+cosecθ=2 

On squaring both the sides, we get

(sinθ+cosecθ)2=22 

We know that (a+b)2=a2+b2+2ab. Therefore, we get

sin2θ+cosec2θ+2sinθcosecθ=4

sin2θ+cosec2θ+2sinθ1sinθ=4

On canceling common terms, we get

sin2θ+cosec2θ+2=4

Transport 2 to the RHS

sin2θ+cosec2θ=42

sin2θ+cosec2θ=2

Hence, option (c) is the correct answer.


  1.  If f(x)=cos2x+sec2x, then 

  1. f(x)<1 

  2. f(x)=1 

  3. 2<f(x)<1 

  4. f(x)2 

Ans: Given, f(x)=cos2x+sec2x

As we know AMGM. Therefore, we get

cos2x+sec2x2cos2x×sec2x

We know that cosx=1secx. Therefore, we get

cos2x+sec2x21

On cross multiplication, we get

cos2x+sec2x2

f(x)2

Hence, option (d) is the correct answer.


  1.  If tanθ=12 and tanϕ=13, then the value of θ+ϕ is 

  1. π6 

  2. π 

  3. 0 

  4. π4 

Ans: Given, tanθ=12 and tanϕ=13

We know that tan(θ+ϕ)=tanθ+tanϕ1tanθtanϕ. Therefore, we will substitute the given values in this formula.

tan(θ+ϕ)=12+13112×13

On taking LCM, we get

tan(θ+ϕ)=3+26616

tan(θ+ϕ)=5656=1

As we know tanπ4=1. Therefore, we get

tan(θ+ϕ)=tanπ4

θ+ϕ=π4

Hence, option (d) is the correct answer.


  1.  Which of the following is not correct?

  1. sinθ=15 

  2. cosθ=1 

  3. secθ=12 

  4. tanθ=20 

Ans: 

As we know 1sinθ1. Therefore, sinθ=15 is correct. 

We know that cos0=1. Therefore, cosθ=1 is correct.

We have, secθ=12. This can also be written as

cosθ=2

Which is not correct because 1sinθ1.

Hence, option (d) is the correct answer.


  1. The value of tan1tan2tan3.....tan89 is

  1. 0 

  2. 1 

  3. 12 

  4. Not defined

Ans: We need to find the value of tan1tan2tan3.....tan89

tan1tan2.....tan44tan45tan(9044).......tan(902)tan(901)

We know that tan(90θ)=cotθ. Therefore, we get

[tan1tan2.....tan44]tan45[cot44......cot2.cot1]

[(tan1×cot1)(tan2cot2).....(tan44cot44)]×tan45

We know that tanA×cotA=1. Therefore, we get

1×1...×1×tan45

Substitute value of tan45=1.

1×1...×1×1=1

Hence, option (b) is the correct answer.


  1.  The value of 1tan2151+tan215 is

  1. 1 

  2. 3 

  3. 32 

  4. 2 

Ans: We have to find the value of 1tan2151+tan215

Let θ=15 

2θ=30 

As we know cos2θ=1tan2θ1+tan2θ. Therefore, on substituting value of θ we get

cos30=1tan2151+tan215

Substitute value of tan30=32.

32=1tan2151+tan215

Or

1tan2151+tan215=32

Hence, option (c) is the correct answer.


  1.  The value of cos1cos2cos3.....cos179 is

  1. 12 

  2. 0 

  3. 1 

  4. 1 

Ans: Given expression: cos1cos2cos3.....cos179

cos1cos2cos3.....cos90......cos179

As we know cos90=0. Therefore, we get

cos1cos2cos3.....×0×......cos179

0

Hence, option (b) is the correct answer.


  1.  If tanθ=3 and θ lies in third quadrant, then the value of sinθ is

  1. 110 

  2. 110 

  3. 310 

  4. 310 

Ans: Given, tanθ=3

tanθ=PB=31 

H=32+12 

H=9+1

H=10

seo images

sinθ=310 

( The value of sinθ is negative because θ lies in the third quadrant )

Hence, option (a) is the correct answer.


  1.  The value of tan75cot75 is equal to

  1. 23 

  2. 2+3 

  3. 23 

  4. 1 

Ans: Given expression, tan75cot75

Above written expression can also be written as,

tan75cot(9015)

We know that cot(90θ)=tanθ. Therefore, we get

tan75tan15

sin75cos75sin15cos15

Take LCM

sin75cos15cos75sin15cos75cos15

We know that sin(AB)=sinAcosBcosAsinB. Therefore, we get

sin(7515)cos75cos15

sin(7515)12×2cos75cos15

We know that 2cosAcosB=cos(A+B)+cos(AB). Therefore, we get

2sin(7515)cos(75+15)+cos(7515)

2sin60cos90+cos60

On substituting the values, we get

2×320+12

30+12=23

Hence, option (a) is the correct answer.


  1.  Which of the following is correct?

  1. sin1>sin1 

  2. sin1<sin1 

  3. sin1=sin1 

  4. sin1=π18sin1 

Ans: We know that when θ increases, the value of sinθ also increases.

Therefore, sin1<sin1

(Since 1radian=π180sin1 )

Hence, option (d) is the correct answer.


  1.  If tanα=mm+1, tanβ=12m+1, then α+β is equal to

  1. π2 

  2. π3 

  3. π6 

  4. π4 

Ans: We have, tanα=mm+1 and tanβ=12m+1

We know that tan(A+B)=tanA+tanB1tanA.tanB. Therefore on substituting the values, we get

tan(α+β)=mm+1+12m+11mm+1.12m+1

tan(α+β)=m(2m+1)+m+1(m+1)(2m+1)(m+1)(2m+1)m(m+1)(2m+1)

On canceling common terms, we get

tan(α+β)=2m2+m+m+12m2+m+2m+1m

On simplification, we get

tan(α+β)=2m2+2m+12m2+2m+1=1

We know that tanπ4=1. Therefore, we get

tan(α+β)=tanπ4

α+β=π4

Hence, option (d) is the correct answer.


  1.  The minimum value of 3cosx+4sinx+8 is

  1. 5 

  2. 9 

  3. 7 

  4. 3 

Ans: Given expression, 3cosx+4sinx+8

Let y=3cosx+4sinx+8 

Transport 8 to the LHS

y8=3cosx+4sinx......(i)

Now, we will find the minimum value of y8.

y8=32+42

y8=9+16

y8=25

y8=5

Now, we will find the minimum value of 3cosx+4sinx+8.

y=5+8

y=3

Therefore, the minimum value of 3cosx+4sinx+8 is 3.

Hence, option (d) is the correct answer.


  1.  The value of tan3Atan2AtanA is equal to

  1. tan3Atan2AtanA 

  2. tan3Atan2AtanA 

  3. tanAtan2Atan2Atan3Atan3AtanA 

  4. None of these

Ans: Given expression, tan3Atan2AtanA

We can write tan3A=tan(2A+A).

We know that tan(x+y)=tanx+tany1tanxtany. Therefore, we get

tan3A=tan2A+tanA1tan2AtanA

Now, we will cross multiply the above written equation.

tan3A(1tan2AtanA)=tan2A+tanA

On multiplication of terms, we get

tan3Atan3Atan2AtanA=tan2A+tanA

tan3Atan2AtanA=tan3Atan2AtanA

Hence, option (a) is the correct answer.


  1.  The value of sin(45+θ)cos(45θ) is

  1. 2cosθ 

  2. 2sinθ 

  3. 1 

  4. 0 

Ans: Given, sin(45+θ)cos(45θ)

As we know sin(A+B)=sinAcosB+cosAsinB and cos(AB)=cosAcosB+sinAsinB. Therefore, we get

(sin45cosθ+cos45sinθ)(cos45cosθ+sin45sinθ)

Substitute value of sin45=12 and cos45=12.

(12cosθ+12sinθ)(12cosθ+12sinθ)

12cosθ+12sinθ12cosθ12sinθ

0 

Hence, option (d) is the correct answer.


  1.  The value of cot(π4+θ)cot(π4θ) is

  1. 1 

  2. 0 

  3. 1 

  4. Not defined

Ans: We have, cot(π4+θ)cot(π4θ)

We know that cot(x+y)=cotx.coty1coty+cotx and cot(xy)=cotx.coty+1cotycotx. Therefore, we get

cotπ4.cotθ1cotθ+cotπ4×cotπ4.cotθ+1cotθcotπ4

Substitute value of cosπ4=1.

1.cotθ1cotθ+1×1.cotθ+1cotθ1

cotθ1cotθ+1×cotθ+1cotθ1

On canceling common terms, we get

1 

Hence, option (c) is the correct answer.


  1. cos2θcos2ϕ+sin2(θϕ)sin2(θ+ϕ) is equal to

  1. sin2(θ+ϕ) 

  2. cos2(θ+ϕ) 

  3. sin2(θϕ) 

  4. cos2(θϕ) 

Ans: We have, cos2θcos2ϕ+sin2(θϕ)sin2(θ+ϕ)

We know that sin2Asin2B=sin(A+B).sin(AB). Therefore, we get

cos2θcos2ϕ+sin(θϕ+θ+ϕ).sin(θϕθϕ)

cos2θcos2ϕ+sin(2θ).sin(2ϕ)

We know that sin(θ)=sinθ. Therefore, we get

cos2θcos2ϕsin2θsin2ϕ

We know that cos(A+B)=cosAcosBsinAsinB. Therefore, we get

cos2(θ+ϕ)

Hence, option (b) is the correct answer.


  1.  The value of cos12+cos84+cos156+cos132 is

  1. 12 

  2. 1 

  3. 12 

  4. 18 

Ans: Given expression: cos12+cos84+cos156+cos132

(cos132+cos12)+(cos156+cos84)

We know that cosA+cosB=2cosA+B2cosAB2. Therefore, we get


2cos(132+122).cos(132122)+2cos(156+842).cos(156842)

2cos(1442).cos(1202)+2cos(2402).cos(722)

2cos(72).cos(60)+2cos(120).cos(36)

Substitute value of cos60=12 and cos120=12.

2cos(72)×12×+2×12×cos(36)

cos72cos36

cos(9018)cos36

We know that cos(90θ)=sinθ. Therefore, we get

sin18cos36

Substitute value of sin18=514 and cos36=5+14.

5145+14

51514

24

12

Hence, option (c) is the correct answer.


  1.  If tanA=12, tanB=13, then tan(2A+B) is equal to

  1. 1 

  2. 2 

  3. 3 

  4. 4 

Ans: Given, tanA=12, tanB=13

We know that tan2x=2tanx1tan2x. Therefore, we get

tan2A=2tanA1tan2A

Now, we will substitute the value of tanA=12

tan2A=2×1211222

tan2A=1414=134

tan2A=43

We need to find value of tan(2A+B)

We know that tan(x+y)=tanx+tany1tanx.tany. Therefore, we get

tan(2A+B)=tan2A+tanB1tan2A.tanB

tan(2A+B)=43+13143.13

tan(2A+B)=53949

tan(2A+B)=53×95

tan(2A+B)=3

Hence, option (c) is the correct answer.


  1.  The value of sinπ10sin13π10 is 

  1. 12 

  2. 12 

  3. 14 

  4. 1 

Ans: We have, sinπ10sin13π10

sinπ10sin(π+3π10) 

We know that sin(π+θ)=sinθ. Therefore, we get

sinπ10sin(3π10)

We know that sin(θ)=sinθ. Therefore, we get

sin18010sin(3×18010)

sin18.sin54

sin18.sin(9036)

We know that sin(90θ)=cosθ. Therefore, we get

sin18.cos36

On substituting the values sin18=514 and cos36=5+14, we get

(514)(5+14)

(5116)

(416)=14

Hence, option (c) is the correct answer.


  1.  The value of sin50sin70+sin10 is equal to

  1. 1 

  2. 0 

  3. 12 

  4. 2 

Ans: Given expression, sin50sin70+sin10

(sin50sin70)+sin10

We know that sinCsinD=2cosC+D2sinCD2. Therefore, we get

2cos50+702sin50702+sin10

2cos60sin(10)+sin10

We know that sin(θ)=sinθ. Therefore, we get

2cos60sin10+sin10

Substitute value of sin60=12.

2×12×sin10+sin10

sin10+sin10

0

Hence, option (b) is the correct answer.


  1.  If sinθ+cosθ=1, then the value of sin2θ is equal to

  1. 1 

  2. 12 

  3. 0 

  4. 1 

Ans: Given, sinθ+cosθ=1

On squaring both the sides, we get

(sinθ+cosθ)2=12

As we know (a+b)2=a2+b2+2ab. So, on applying this identity, we get

sin2θ+cos2θ+2sinθcosθ=1

As we know sin2θ+cos2θ=1. So, on applying this formula, we get

1+2sinθcosθ=1

As we know sin2A=2sinAcosA. Therefore, we get

2sinθcosθ=11

sin2θ=0

Hence, option (c) is the correct answer.


  1.  If α+β=π4, then the value of (1+tanα)(1+tanβ) is 

  1. 1 

  2. 2 

  3. 2 

  4. Not defined

Ans: Given, α+β=π4

tan(α+β)=tanπ4

We know that tan(x+y)=tanx+tany1tanxtany. Therefore, we get

tanα+tanβ1tanαtanβ=tanπ4

On substituting the value of tanπ4=1, we get

tanα+tanβ1tanαtanβ=1

On cross-multiplication, we get

tanα+tanβ=1tanαtanβ

tanα+tanβ+tanαtanβ=1

Add 1 to both the sides

1+tanα+tanβ+tanαtanβ=1+1

Take tanβ as a common term.

(1+tanα)+tanβ(1+tanα)=2

(1+tanα)(1+tanα)=2

Hence, option (b) is the correct answer.


  1.  If sinθ=45 and θ lies in third quadrant then the value of cosθ2 is

  1. 15 

  2. 110 

  3. 15 

  4. 110 

Ans: Given, sinθ=45. Here, value of sine is negative because θ lies in third quadrant. As here we need to find cosθ2, so we will first find the value of cosθ.

We know that sin2θ+cos2θ=1

cosθ=1sin2θ 

Substitute the value of sinθ=45.

cosθ=1(45)2

cosθ=11625

On taking LCM, we get

cosθ=251625

cosθ=925

cosθ=±35

As it is mentioned in the question that θ lies in the third quadrant and we know cos is negative in the third quadrant. Therefore, we get

cosθ=35

We know that cosθ=2cos2θ21. Now we will substitute value of cosθ in this identity.

35=2cos2θ21

(Here, value of cosθ is negative because π<θ<3π2 )

2cos2θ2=135

2cos2θ2=25

On canceling common term, we get

cos2θ2=15

cosθ2=±15

As we know π<θ<3π2. Therefore, π2<θ2<3π4 

cosθ2=15

Hence, option (c) is the correct answer.

  1.  Number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2π] is

  1. 0 

  2. 1 

  3. 2 

  4. 3 

Ans: Given that, tanx+secx=2cosx

We will first write above written equation in terms of sine and cos.

sinxcosx+1cosx=2cosx 

sinx+1cosx=2cosx

sinx+1=2cos2x

2cos2xsinx1=0

2(1sin2x)sinx1=0

2sin2xsinx+1=0

2sin2x+sinx1=0

Since, the above written equation is a quadratic equation in sinx. Therefore, it will have 2 solutions.

Hence, option (c) is the correct answer.


  1.  The value of sinπ18+sinπ9+sin2π9+sin5π18 is given by

  1. sin7π18+sin4π9 

  2. 1 

  3. cosπ6+cos3π7 

  4. cosπ9+sinπ9 

Ans: Given expression: sinπ18+sinπ9+sin2π9+sin5π18

(sin5π18+sinπ18)+(sin2π9+sinπ9)

We know that sinA+sinB=2sinA+B2cosAB2. Therefore, we get

2sin(5π18+π182).cos(5π18π182)+2sin(2π9+π92).cos(2π9π92)

2sin(6π182).cos(4π182)+2sin(3π92).cos(π92)

2sin(π6).cos(π9)+2sin(π6).cos(π18)

Substitute value of sinπ6=12.

2×12×cos(π9)+2×12×cos(π18)

cos(π9)+cos(π18)

We know that cosθ=sin(90θ). Therefore, we get

sin(π2π9)+sin(π2π18)

sin7π18+sin8π18

sin7π18+sin4π9

Hence, option (a) is the correct answer.


  1.  If A lies in the second quadrant and 3tanA+4=0, then the value of 2cotA5cosA+sinA is equal to

  1. 5310 

  2. 2310 

  3. 3710 

  4. 710 

Ans: Given, 3tanA+4=0

3tanA=4

tanA=43=PB

We know that H2=P2+B2 

H2=(4)2+(3)2

H2=16+9

H2=25

H=5

We know that cosx=BH. Therefore, we get

cosA=35 (Negative because A lies in second quadrant)

We know that sinx=PH. Therefore, we get

sinA=45

We know that cotx=BP. Therefore, we get

cotA=34 (Negative because A lies in second quadrant)

We need to find the value of 2cotA5cosA+sinA

2×345×(35)+45

32+3+45

15+30+810

2310

Hence, option (a) is the correct answer.


  1.  The value of cos248sin212 is

  1. 5+18 

  2. 518 

  3. 5+15 

  4. 5+122 

Ans: Given expression: cos248sin212

We know that cos2Asin2A=cos(A+B).cos(AB). Therefore, we get

cos(48+12).cos(4812)

cos60.cos36

On substituting the values, cos60=12 and cos36=5+14. Therefore, we get

12×5+14

5+18

Hence, option (a) is the correct answer.


  1.  If tanα=17, tanβ=13, then cos2α is equal to

  1. sin2β 

  2. sin4β 

  3. sin3β 

  4. cos2β 

Ans: Given, tanα=17, tanβ=13

We know that cos2x=1tan2x1+tan2x. Therefore, we get

cos2α=1tan2α1+tan2α=112721+1272

cos2α=7217272+172=72172+1

cos2α=49149+1=4850

cos2α=2425

Similarly, 

tan2β=2tanβ1tan2β

tan2β=2×1311232


tan2β=2389=23×98

tan2β=34

We know that sin2x=2tanx1+tan2x. Therefore, we get

sin4β=2tan2β1+tan22β

sin4β=2×341+3242

sin4β=6416+916

sin4β=64×1625

sin4β=2425=cos2α

Hence, option (b) is the correct answer.


  1.  If tanθ=ab, then bcos2θ+asin2θ is equal to

  1. a 

  2. b 

  3. ab 

  4. None

Ans: Given, tanθ=ab

We have, bcos2θ+asin2θ

We know that cos2x=1tan2x1+tan2x and sin2x=2tanx1+tan2x. Therefore, we get

b[1tan2θ1+tan2θ]+a[2tanθ1+tan2θ]

Substitute tanθ=ab

b[1a2b21+a2b2]+a[2ab1+a2b2]

b[b2a2b2b2+a2b2]+a[2abb2+a2b2]

b[b2a2b2+a2]+a[2abb2+a2]

[b3a2bb2+a2]+[2a2bb2+a2]

b3a2b+2a2bb2+a2

b(b2+a2)b2+a2

b

Hence, option (b) is the correct answer.


  1.  If for real values of x, cosθ=x+1x, then

  1. θ is an acute angle

  2. θ is right angle

  3. θ is an obtuse angle

  4. No value of θ is possible

Ans: Given, cosθ=x+1x

cosθ=x2+1x

x2+1=xcosθ

x2xcosθ+1=0

We know that for real value of x, b24ac0. Therefore, we get

(cosθ)24×1×10 

(cosθ)240

cos2θ4

cosθ±2

We know that 1cosθ1. Therefore, value of θ is not possible

Hence, option (d) is the correct answer.


Fill in the blanks in exercises 60 to 67.

  1.  The value of sin50sin130 is …….

Ans: We need to find the value of sin50sin130

As we know sin(180θ)=sinθ. Therefore, we get

sin50sin(18050)

sin50sin50

On canceling the common term, we get

1

Thus, value of filler is 1.


  1.  If k=sin(π18)sin(5π18)sin(7π18), then the numerical value of k is …….

Ans: Given, k=sin(π18)sin(5π18)sin(7π18)

Substitute value of π=180.

k=sin(18018)sin(5×18018)sin(7×18018)

On simplification, we get

k=sin10.sin50.sin70

k=sin10.sin(9040).sin(9020)

As we know sin(90θ)=cosθ. Therefore, we get

k=sin10.cos40.cos20

Multiply and divide above written equation by 2 

k=sin1012[2cos40cos20]

We know that 2cosxcosy=cos(x+y)+cos(xy). Therefore, we get

k=12sin10[cos(40+20)+cos(4020)]

k=12sin10[cos60+cos20]

Substitute value of cos60=12.

k=12sin10[12+cos20]

On multiplication of terms, we get

k=14sin10+12sin10cos20

Multiply and divide sin10cos20 by 2

k=14sin10+12×12(2sin10cos20)

We know that 2sinxcosy=sin(x+y)+sin(xy). Therefore, we get

k=14sin10+14(sin(10+20)+sin(1020))

k=14sin10+14(sin30+sin(10))

We know that sin(θ)=sinθ . Therefore, we get

k=14sin10+14sin3014sin10

k=14sin30

Substitute the value of sin30=12.

k=14×12=18

Thus, value of filler is 18.


  1.  If tanA=1cosBsinB, then tan2A= …….

Ans: Given, tanA=1cosBsinB

We know that tan2A=2tanA1tan2A. So, we will substitute given value of tanA in this formula.

tan2A=2(1cosBsinB)1(1cosBsinB)2

We know that 1cosx=2sin2x2 and sinx=2sinx2cosx2. Therefore, we get

tan2A=2(2sin2B22sinB2cosB2)1(2sin2B22sinB2cosB2)2

tan2A=2(sinB2cosB2)1(sinB2cosB2)2

As we know sinxcosx=tanx. Therefore, we get

tan2A=2(tanB2)1tan2B2

We know that tanB=2tanB21tan2B2. Therefore, we get

tan2A=tanB

Thus, value of filler is tanB.


  1.  If sinx+cosx=a, then

  1. sin6x+cos6x= ……

  2. |sinxcosx|= ……

Ans: Given, sinx+cosx=a

On squaring both the sides, we get

(sinx+cosx)2=a2

sin2x+cos2x+2sinxcosx=a2

1+2sinxcosx=a2

2sinxcosx=a21

sinxcosx=a212.....(1)

  1. sin6x+cos6x 

This can also be written as (sin2x)3+(cos2x)3.

We know that a3+b3=(a+b)33ab(a+b). Therefore, we get

(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x) 

13sin2xcos2x

On substituting sinxcosx=a212, we get

13(a212)2

13(a21)24

14[43(a21)2]

  1. |sinxcosx| 

On squaring, we get

|sinxcosx|2

sin2x+cos2x2sinxcosx 

On substituting sinxcosx=a212, we get

12(a212)

1a2+1

2a2

|sinxcosx|=2a2

We know that |sinxcosx|>0

Therefore, the value of filler is 2a2.


  1.  In a triangle ABC with C=90 the equation whose roots are tanA and tanB is ……

Ans: Given, ABC with C=90

We know that quadratic equation in the form of roots is x2(α+β)x+αβ=0.

x2(tanA+tanB)x+tanA.tanB=0 

We know that sum of interior angle of triangle is 180. Therefore, we get

A+B+C=180 

A+B+90=180

A+B=180

tan(A+B)=tan90 

We know that tan(x+y)=tanx+tany1tanxtany. Therefore, we get

tanA+tanB1tanAtanB=10

On cross multiplication, we get

1tanAtanB=0

tanAtanB=1....(i)

Now, tanA+tanB 

sinAcosA+sinBcosB 

sinAcosB+cosAsinBcosAcosB

We know that sin(A+B)=sinAcosB+cosAsinB. Therefore, we get

sin(A+B)cosAcosB

sin90cosAcos(90A)

1cosAsinA

22cosAsinA

We know that sin2A=2sinAcosA. Therefore, we get

2sin2A

tanA+tanB=2sin2A.....(ii)

We have, x2(tanA+tanB)x+tanA.tanB=0. Therefore, from equation (i) and (ii), we get

x2(2sin2A)x+1=0

Therefore, the value of filler is x2(2sin2A)x+1=0.

  1.  3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)= …….

Ans: Given expression: 3(sinxcosx)4+6(sinx+cosx)2+4(sin6x+cos6x)

3[(sinxcosx)2]2+6(sinx+cosx)2+4(sin6x+cos6x)

3[sin2x+cos2x2sinxcosx]2+6[sin2x+cos2x+2sinxcosx]+4[(sin2x)3+(cos2x)3]

We know that sin2x+cos2x=1. Therefore, we get

3[12sinxcosx]2+6[1+2sinxcosx]+4[(sin2x)3+(cos2x)3]

We know that a3+b3=(a+b)33ab(a+b). Therefore, we get

3[12sinxcosx]2+6[1+2sinxcosx]+4[(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)] 

3[1+4sin2xcos2x4sinxcosx]+6[1+2sinxcosx]+4[13sin2xcos2x]

3+12sin2xcos2x12sinxcosx+6+12sinxcosx+412sin2xcos2x

3+6+4

13

Therefore, the value of filler is 13.


  1.  Given x>0, the values of f(x)=3cos3+x+x2 lie in the interval …….

Ans: Given, f(x)=3cos3+x+x2

Put 3+x+x2=y 

f(x)=3cosy

We know that 1cosy1

33cosy3

33cosy3

Substitute value of y.

33cos3+x+x23 

Therefore, the value of filler is [3,3].


  1.  The maximum distance of a point on the graph of the function y=3sinx+cosx from xaxis is …….

Ans: Given, f(x)=3cos3+x+x2

Or 

y=3cos3+x+x2

We know that the maximum distance from a point on the graph from xaxis is given by,

(3)2+(1)2 

3+1

2

Therefore, the value of filler is 2.


In each of the exercises 68 to 75, state whether the statements is True or False? Also give justification.

  1.  If tanA=1cosBsinB, then tan2A=tanB.

Ans: Given, tanA=1cosBsinB

We know that 1cos2A=2sin2A and sin2A=2sinAcosA. Therefore, we get

tanA=2sin2B22sinB2cosB2

tanA=sinB2cosB2

tanA=tanB2

We know that tan2x=2tanx1tan2x. Therefore, we get

tan2A=2tanA1tan2A

On substituting the value of tanA=tanB2, we get

tan2A=2tanB21tan2B2

tan2A=tanB

Thus, the given statement is true.


  1.  The equality sinA+sin2A+sin3A=3 holds for some real value of A.

Ans: Given, sinA+sin2A+sin3A=3

We know that the maximum value of sinA is 1. But for sin2A and sin3A it is not equal to 1. Hence, it is not possible

Thus, the given statement is false.


  1.  sin10 is greater than cos10.

Ans: Given, sin10>cos10

sin10>cos(9080)

We know that cos(90θ)=sinθ. Therefore, we get

sin10>sin80

It is incorrect because value of sine is in increasing order.

Thus, the given statement is false.


  1.  cos2π15cos4π15cos8π15cos16π15=116.

Ans: Let us start to solve cos2π15cos4π15cos8π15cos16π15

Substitute value of π=180.

cos2×18015.cos4×18015.cos8×18015.cos16×18015

cos2×121.cos4×121.cos8×121.cos16×121

cos24.cos48.cos96.cos192

Now, we will multiply and divide the above written expression by 16sin24.

16sin2416sin24[cos24.cos48.cos96.cos192]

Above written expression can also be written as,

116sin24[(2sin24cos24).2cos48.2cos96.2cos192]

We know that 2sinAcosA=sin2A. Therefore, we get

116sin24[sin(2×24).2cos48.2cos96.2cos192]

116sin24[sin48.2cos48.2cos96.2cos192]

116sin24[(2sin48cos48).2cos96.2cos192]

We know that 2sinAcosA=sin2A. Therefore, we get

116sin24[sin96.2cos96.2cos192]

116sin24[2sin96cos96.2cos192]

We know that 2sinAcosA=sin2A. Therefore, we get

116sin24[sin192.2cos192]

116sin24[2sin192cos192]

We know that 2sinAcosA=sin2A. Therefore, we get

116sin24(sin384)

We know that sin384 can also be written as sin(360+24). Therefore, we get

116sin24sin(360+24)

We know that sin(360+24)=sin24. Therefore, we get

116sin24×sin24

116

Hence proved L.HS. = R.H.S.

Thus, the given statement is true.


  1.  One value of θ which satisfies the equation sin4θ2sin2θ1 lies between 0 and 2π.

Ans: We have, sin4θ2sin2θ1

Let y=sin2θ. Therefore, we get

y22y1=0

We know that for quadratic equation ax2+bx+c=0, x=b±b24ac2a. Therefore, we get

y=(2)±(2)24×1×12×1 

y=2±4+42

y=2±222=2(1±2)2

On canceling common terms, we get

y=1±2

sin2θ=1±2

sin2θ=1+2 or sin2θ=12

We know that 1sinθ1. Therefore, we say that sin2θ1.

But we have, 

sin2θ=1+2 or sin2θ=12

Which is not possible.

Thus, the given statement is false.


  1.  If cosecx=1+cotx then x=2nπ,2nπ+π2.

Ans: Given, cosecx=1+cotx

1sinx=1+cosxsinx 

1sinx=sinx+cosxsinx

sinx+cosx=1

Divide whole equation by 2.

12sinx+12cosx=12

We know that sinπ4=12 and cosπ4=12. Therefore, we can write above  written equation as,

sinπ4sinx+cosπ4cosx=12

Or

cosxcosπ4+sinxsinπ4=12

We know that cos(xy)=cosxcosy+sinxsiny. Therefore, we get

cos(xπ4)=12

cos(xπ4)=cosπ4

We know that if cosθ=cosα, then θ=2nπ±α. Therefore, we get

xπ4=2nπ±π4

x=2nπ±π4+π4

x=2nπ+π4+π4 or x=2nππ4+π4

x=2nπ+π2 or x=2nπ

Thus, the given statement is true.


  1.  If tanθ+tan2θ+3tanθtan2θ=3, then θ=nπ3+π9.

Ans: Given, tanθ+tan2θ+3tanθtan2θ=3

tanθ+tan2θ=33tanθtan2θ

tanθ+tan2θ=3(1tanθtan2θ)

tanθ+tan2θ1tanθtan2θ=3

We know that tanx+tany1tanxtany=tan(x+y). Therefore, we get

tan(θ+2θ)=3

We know that tanπ3=3. Therefore, we get

tan(3θ)=tanπ3

We know that if tanθ=tanα then θ=nπ+α, nZ

3θ=nπ+π3

θ=nπ3+π9

Thus, the given statement is true.


  1.  If tan(πcosθ)=cot(πsinθ), then cos(θπ4)=±122.

Ans: Given, tan(πcosθ)=cot(πsinθ)

We know that tan(90θ)=cotθ. So, we can write above written equation as

tan(πcosθ)=tan(π2πsinθ)

πcosθ=π2πsinθ

πcosθ+πsinθ=π2

cosθ+sinθ=12

Divide whole equation by 2.

12cosθ+12sinθ=122

We know that sinπ4=12 and cosπ4=12. Therefore, we can write above  written equation as,

cosπ4cosθ+sinπ4sinθ=122

Or

cosθcosπ4+sinθsinπ4=122

We know that cos(xy)=cosxcosy+sinxsiny. Therefore, we get

cos(θπ4)=±122

Thus, the given statement is true.


  1.  In the following match each item given under the column C1 to its correct answer given under the column C2.

  1. sin(x+y)sin(xy)  (i)    cos2xcos2y                            

  2. cos(x+y)cos(xy) (ii)   1tanθ1+tanθ 

  3. cot(π4+θ) (iii)  1tanθ1+tanθ

  4. tan(π4+θ)                                                  (iv)  sin2xsin2y

Ans: 

  1. sin(x+y)sin(xy)

We know that sin(x+y)sin(xy)=sin2xsin2y

(a)(iv) 

  1. cos(x+y)cos(xy)

We know that cos(x+y)cos(xy)=cos2xcos2y

(b)(i)

  1. cot(π4+θ)

We know that cot(x+y)=cotx.coty1coty+cotx. Therefore, we get

cot(π4+θ)=cotπ4.cotθ1cotθ+cotπ4

Substitute cotπ4=1 

cot(π4+θ)=cotθ1cotθ+1

Divide RHS by cotθ 

cot(π4+θ)=11cotθ1+1cotθ

cot(π4+θ)=1tanθ1+tanθ

(c)(ii)

  1. tan(π4+θ)

We know that tan(x+y)=tanx+tany1tanx.tany. Therefore, we get

tan(π4+θ)=tanπ4+tanθ1tanπ4.tanθ

Substitute tanπ4=1 

tan(π4+θ)=1+tanθ1tanθ

(d)(iii)


Class 11 Maths Chapter 3 Trigonometric Functions

With Vedantu solutions, the students can use trigonometric identities in different other mathematics chapters within the NCERT. This is a crucial platform for students to comprehend and memorise the core properties and identities of trigonometric functions. This chapter has been explained in a manner by Vedantu experts that students are able to attain clarity regarding the concepts and logic. If they find any difficulty, then they can get the help of experts to get on-time solutions. 

 

Vedantu tutors help the students get versed with the analysis of electric circuits, forecasting the height of the tides in the ocean, and evaluating a musical tone in seismology.

 

Vedantu enables the students to check NCERT Exemplar for Class 11 Maths - Trigonometric Functions under a single roof. All the offered solutions are helpful to build the bright future of the students. Students need to ensure from their end that they keep on regularly practising for the entire year and must not budge an inch from their focus. If this is the path they follow, then success is destined for them. 

 

Concepts of Chapter 3

In this chapter, students will learn and solve exemplar problems based on topics as follows:

  • The relation between degree and radian

  • Trigonometric functions

  • Domain and range of trigonometric functions

  • Sine, cosine, and tangent of some angles less than 90°

  • Allied or related angles

  • Functions of negative angles

  • Some formulae regarding compound angles

  • Trigonometric equations

  • General Solution of Trigonometric Equations

WhatsApp Banner

FAQs on NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)

1. What solutions will the students learn from NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)?

 The students will get a chance to learn a number of concepts from NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions). This textbook provides a different range of applications in varied fields such as sound engineers, engineering, surveyors, astronauts, physicists, architects, and more for the futuristics goals of the students. This chapter is of much importance as it has varied applications in our real life. For instance, it could be used in mountains, bridges, roofs, buildings, and the vast use of physics for explanations and derivations. 

2. What are the main topics covered in NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)?

In NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions), there are varied topics covered. 3.1 section of the chapters includes an introduction, 3.2 covered angles, 3.3 comprises trigonometric functions, 3.4 consists of trigonometric functions of the sum and the difference of two angles, and the last one is 3.5, which has trigonometric functions equations. The preparation of these chapters will help the students get good marks and open new avenues in the future. 

3. Where can I get the complete solutions for NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)?

Vedantu offers a complete NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions). Here, you only need to sign up and access the material in PDF format. You can access it in both offline and online modes. Students who want to shorten their screen time can also print it. The entire study material from Vedantu comes in a simple to comprehend format. So, choose Vedantu for complete solutions and stay ready with complete preparation for the examination. 

4. Is it free to download NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)?

Yes, you can download NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions) for free. This platform is known for its authenticity and accuracy of the subject matter. The reason is simple: they have hired the topmost tutors for preparing notes for each class. And, the language in every subject is kept simple and easy. Above all, they conduct deep research, and the latest methods are kept on priority before finalising the study material for the students of the respective class. 

5. Why is Vedantu the best platform for obtaining  NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions)?

There are varied reasons that Vedantu is the best NCERT Exemplar for Class 11 Maths Chapter 3 - Trigonometric Functions (Book Solutions). The first and foremost thing about it is that no platform can earn face value until it does something different. And, here, Vedantu has made a mark among students by offering simple, genuine, accurate coaching that is useful for the students in the longer run. This is why Vedantu earns full marks!