Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Relations and Functions Class 11 Notes CBSE Maths Chapter 2 [Free PDF Download]

ffImage
Last updated date: 25th Apr 2024
Total views: 747k
Views today: 22.47k

Revision Notes for CBSE Class 11 Maths Chapter 2 (Relations and Functions) - Free PDF Download

Revision Notes for Class 11 Maths Chapter 2 Relations and Functions are provided here as per the new syllabus prescribed by CBSE. The Revision Notes are very helpful for students in their preparation for examinations. Students should go through these Revision Notes of Chapter 2- Relations and Functions to score better in the exam.

In the Chapter Relations and Functions, important concepts of Mathematics are discussed. The solutions are prepared by our subject matter experts in easy language so that students can grab the complex concepts of mathematics easily through solutions.

Download CBSE Class 11 Maths Revision Notes 2024-25 PDF

Also, check CBSE Class 11 Maths revision notes for other chapters:


Relations and Functions Chapter-Related Important Study Materials
It is a curated compilation of relevant online resources that complement and expand upon the content covered in a specific chapter. Explore these links to access additional readings, explanatory videos, practice exercises, and other valuable materials that enhance your understanding of the chapter's subject matter.

Competitive Exams after 12th Science

Relations and Functions Class 11 Notes Maths - Basic Subjective Questions


Section–A (1 Mark Questions)

1. If $f(x)=x^3-\frac{1}{x^3}$, then $f(x)+f\left ( \frac{1}{x} \right )$ is equal to ______.

Ans. Since $f(x)=x^3-\frac{1}{x^3}$

$$f\left(\frac{1}{x}\right)=\frac{1}{x^3}-\frac{1}{\frac{1}{x^3}}=\frac{1}{x^3}-x^3$$

Hence $f(x)+f\left(\frac{1}{x}\right)=x^3-\frac{1}{x^3}+\frac{1}{x^3}-x^3=0$.


2. Find the domain of real function f defined by $f(x)=\sqrt{x-1}$.

Ans. Given that: $f(x)=\sqrt{x-1}$

$f(x)$ is defined if $x-1 \geq 0 \Rightarrow x \geq 1$

$\therefore$ Domain of $f(x)=[1, \infty)$


3. Let n (A) = m and n (B) = n, then the total number of non-empty relations that can be defined from A to B is equal to______.

Ans. Given that: $n(\mathrm{~A})=\mathrm{m}$ and $n(\mathrm{~B})=\mathrm{n}$


$$\therefore n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) n(\mathrm{~B})=m n$$


So, the total number of relations from $A$ to $B$ $=2^{\text {min }}$.


Thus, the total number of non-empty relations from $\mathrm{A}$ to $\mathrm{B}=2^{m a}-1$.


4. The Cartesian product of A = {1, 2} and B = {3, 4} is equal to ______.

Ans. Given that: $A=\{1,2\}, B=\{3,4\}$

Therefore, $A \times B=\{(1,3),(1,4),(2,3),(2,4)\}$.


5. The function $f(x)=x+1$ and $g(x)=2x-1$. The value $\left ( \frac{f}{g} \right )(x)$ is ______.

Ans. $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{x+1}{2 x-1}$.

Where, $x \neq \frac{1}{2}$


Section–B (2 Marks Questions)

6. Find the Domain of the function $f(x)=log(7x+3)$.

Ans. Function $f(x)$ is defined if $7 x+3>0$

$$ \begin{aligned} & \Rightarrow 7 x+3>0 \\ & \Rightarrow 7 x>-3 \\ & \Rightarrow x>-\frac{3}{7} \end{aligned} $$

Hence, domain $\left(-\frac{3}{7}, \infty\right)$.


7. If $y=f(x)=\frac{(ax-b)}{bx-a}$, show that x=f(y).

Ans. Given:

$$ \begin{gathered} y=f(x)=\frac{(a x-b)}{(b x-a)} \\ \Rightarrow f(y)=\frac{(a y-b)}{(b y-a)} \end{gathered} $$

Let us prove that $x=f(y)$

We have, $y=\frac{(a x-b)}{(b x-a)}$

By cross-multiplying,

$$ \begin{aligned} & y(b x-a)=a x-b \\ & b x y-a y=a x-b \\ & b x y-a x=a y-b \\ & x(b y-a)=a y-b \\ & x=\frac{(a y-b)}{(b y-a)}=f(y) \\ & \therefore x=f(y) \end{aligned} $$

Hence proved.


8. Find x and y if:

(i) (4x+3,y)=(3x+5-2)

(ii) (x-y,x+y) = (6,10)

Ans. 

(i) Since $(4 x+3, y)=(3 x+5,-2)$, so

$$ \begin{aligned} & 4 x+3=3 x+5 \quad \text { and } y=-2 \\ & \Rightarrow x=2 \text { and } y=-2 \end{aligned} $$

(ii) $x-y=6 ; x+y=10$

$$ \begin{aligned} & \therefore 2 x=16 \Rightarrow x=8 \\ & \therefore y=2 . \end{aligned} $$


9. If f is a real function defined by $f(x)=\frac{x-1}{x+1}$ then prove that: $f(2x)=\frac{3f(x)+1}{f(x)+3}$.

Ans. We have, $f(x)=\frac{x-1}{x+1}$

$$ \Rightarrow \frac{f(x)+1}{f(x)-1}=\frac{x-1+x+1}{x-1-x-1} $$

[Applying componendo and dividendo]

$$ \Rightarrow x=\frac{f(x)+1}{1-f(x)} $$

Now, $f(2 x)=\frac{2 x-1}{2 x+1}$

$$ \begin{aligned} & \Rightarrow f(2 x)=\frac{2\left\{\frac{f(x)+1}{1-f(x)}\right\}-1}{2\left\{\frac{f(x)+1}{1-f(x)}\right\}+1} \\ & \Rightarrow f(2 x)=\frac{2 f(x)+2-1+f(x)}{2 f(x)+2+1-f(x)} \\ & \Rightarrow f(2 x)=\frac{3 f(x)+1}{f(x)+3} \end{aligned} $$

Hence proved.


10. If A={1,2,3}, B {3,4} and C={4,5,6}, find.

(i) $A\times(B\cap C)$

(ii) $(A\times B)\cap (A\times C)$ 

(iii) (A\times B)\cup (A\times C) 

Ans. $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\}$

(i) $(B \cap C)=\{4\}$

$$ \begin{aligned} A \times(B \cap C) & =\{1,2,3\} \times\{4\} \\ & =\{(1,4),(2,4),(3,4)\} \end{aligned} $$


\begin{aligned} & \text { (ii) }(A \times B)=\{1,2,3\} \times\{3,4\} \\ &=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\} \\ &(A \times C)=\{1,2,3\} \times\{4,5,6\} \\ &=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4), \\ &(3,5),(3,6)\} \\ &(A \times B) \cap(A \times C)=\{(1,4),(2,4),(3,4)\} \\\end{aligned}


11. Let $f(x)=\sqrt{x}$ and $g(x)=x$  be two functions defined in the domain $R^{+}\cup \left \{ 0 \right \}$. Find-

(i)  $(f+g)(x)$

(ii) $(f-g)(x)$

(iii) $(f.g)(x)$

(iv) $\left ( \frac{f}{f} \right )(x)$ 

Ans. Given that: $f(x)=\sqrt{x}$ and $g(x)=x$ be two functions defined in the domain $R^{+} \cup\{0\}$.

i) $(f+g)(x)=f(x)+g(x)=\sqrt{x}+x$

ii) $(f-g)(x)=f(x)-g(x)=\sqrt{x}-x$

iii) $(f \cdot g)(x)=f(x) \cdot g(x)=\sqrt{x} \cdot x=x^{3 / 2}$

iv) $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\sqrt{x}}{x}=\frac{1}{\sqrt{x}}$ for all $x>0$.


12. Given $R=\left \{ (x,y):x,y\epsilon W,x^{2}+y^{2}\right \}=25$ Find the domain and range of R.

Ans. We have, $R=\left \{ (x,y):x,y\epsilon W,x^{2}+y^{2}\right \}=25$

R= {(0,5), (3,4), (4,3), (5,0)}

Domain of R= Set of first element of ordered pairs in R={0,3,4,5}

Range of R= Set of second element of ordered pairs in R={5,4,3,0}.

13. If P = {x: x < 3, x$\epsilon$ N}, Q = {x: x < 2, x $\epsilon$ W}. Find        (P $\cup$Q) \times (P $\cap$ Q) where W is the set of whole numbers.

Ans. Given that: P = {x: x < 3, x$\epsilon$ N}

$\Rightarrow$ P = {1,2}

Q = {x:x<2, x $\epsilon$ W}

$\Rightarrow$ Q= {0,1}

Now, 

Now, (P$\cup$Q) = {0, 1, 2} and (P$\cap$Q) = {1}

$\therefore$ (P$\cup$Q) $\times$ (P$\cap$Q) = {(0, 1), (1, 1), (2, 1)}.


PDF Summary - Class 11 Maths Relations and Functions Notes (Chapter 2)

1. Introduction:

  • In this chapter, we'll learn how to link pairs of objects from two sets to form a relation between them. 

  • We'll see how a relation can be classified as a function. 

  • Finally, we'll look at several types of functions, as well as some standard functions.

2. Relations:

$ 2.1 $  Cartesian Product of Sets

Definition: 

  • Given two non-empty sets  $ P $  and  $ Q $  . 

  • The Cartesian product  $ P\times Q $  is the set of all ordered pairs of elements from  $ P $  and  $ Q $  that is

  • \[\text{P }\!\!\times\!\!\text{ Q =  }\!\!\{\!\!\text{ }\left( \text{p, q} \right)\text{ ; p}\in \text{P ; q}\in \text{Q }\!\!\}\!\!\text{ }\]


$ 2.2 $  Relation:

$ 2.2.1 $  Definition: 

  • Let  $ A $  and  $ B $  be two non-empty sets. 

  • Then any subset ‘\[\text{R}\]’ of \[\text{A }\!\!\times\!\!\text{ B}\] is a relation from  $ A $ and  $ B $ . 

  • If\[\left( \text{a, b} \right)\in ~\text{R}\] , then we can write it as a  $ \text{R b} $  which is read as  $ \text{a} $  is related to \[\text{b}\]  ‘by the relation \[\text{R}\]’, ‘ $ \text{b} $ ’ is also called image of ‘ $ \text{a} $ ’ under $ \text{R} $ .


$ 2.2.2 $  Domain and Range of a Relation: 

  • If  $ \text{R} $  is a relation from  $ A $  to  $ B $ , then the set of first elements in  $ \text{R} $  is known as domain & the set of second elements in  $ \text{R} $  is called range of  $ \text{R} $  symbolically.

  • Domain of \[\text{R =  }\!\!\{\!\!\text{  x:}\left( \text{x, y} \right)\in \text{R }\!\!\}\!\!\text{ }\] 

  • Range of \[\text{R =  }\!\!\{\!\!\text{  y:}\left( \text{x, y} \right)\in \text{R }\!\!\}\!\!\text{ }\] 

  • The set  $ B $  is considered as co-domain of relation  $ \text{R} $ . 

  • Note that,

$ \text{range }\!\!~\!\!\text{ }\subset \text{co-domain} $ 

Note : 

Total number of relations that can be defined from a set  $ A $  to a set  $ B $   is the number of possible subsets of \[\text{A }\!\!\times\!\!\text{ B}\]. 

If  \[\text{n}\left( \text{A} \right)\text{ = p}\] and \[\text{n}\left( \text{B} \right)\text{ = q}\], then 

$\text{n}\left( \text{A }\times \text{ B} \right)\text{ = pq }~\text{and}$ total  number of relations is  $ {{\text{2}}^{\text{pq}}} $  .

$ 2.2.3 $  Inverse of a Relation: 

  • Let  $ \text{A, B} $   be two sets and let  $ \text{R} $  be a relation from a set  $ A $  to set  $ B $ . Then the inverse of  $ \text{R} $ denoted as  $ {{\text{R}}^{\text{-1}}} $ , is a relation from  $ B $  to  $ A $   and is defined by

\[{{\text{R}}^{\text{--1}}}\text{ =  }\!\!\{\!\!\text{ }\left( \text{b, a} \right)\text{:}\left( \text{a, b} \right)\in \text{R }\!\!\}\!\!\text{ }\] 

  • Clearly 

\[\left( \text{a, b} \right)\in \text{R}\Leftrightarrow \left( \text{b, a} \right)\in {{\text{R}}^{\text{--1}}}\] 

  • Also, 

$ \text{Dom}\left( \text{R} \right)\text{ = Range(}{{\text{R}}^{\text{--1}}}\text{)  }\!\!~\!\!\text{ and}$

$\text{Range}\left( \text{R} \right)\text{ = Dom(}{{\text{R}}^{\text{--1}}}\text{)}$


3. Functions:

$ 3.1 $  Definition: 

A relation ‘ $ \text{f} $ ’ from a set  $ A $  to set  $ B $  is said to be a function if every element of set  $ A $  has one and only one image in set  $ B $ .


Notations:


Notations


Notations


Notations 2


Notations 2


Notations 3



Notations 3


$ 3.2 $  Domain, Co-domain and Range of a function:

Domain: 

The domain is believed to be the biggest set of  $ \text{x -} $  values for which the formula provides real  $ \text{y -} $  values when \[\text{y = f}\left( \text{x} \right)\]  is defined using a formula and the domain is not indicated explicitly.

The domain of   $ y=f(x) $  is the set of all real  $ x $  for which  $ f(x) $   is defined (real).


Rules for finding Domain:

1. Even roots (square root, fourth root, etc.) should have non–negative expressions.

2. Denominator  $ \ne 0 $  

3. \[\text{lo}{{\text{g}}_{\text{a}}}\text{x}\] is defined when \[\text{x  0, a  0}\] and \[\text{a}\ne 1\] 

4. If domain \[\text{y = f(x)}\] and \[\text{y = g(x)}\] are  $ {{D}_{1}} $  and  $ {{D}_{2}} $  respectively then the domain of  $ f(x)\pm g(x) $  or  $ f(x).g(x) $  is  $ {{D}_{1}}\cap {{D}_{2}} $ . 

While domain of   $ \dfrac{f(x)}{g(x)} $  is  $ {{D}_{1}}\cap {{D}_{2}}-\left\{ x:g(x)=0 \right\} $  


Range: 

The set of all  $ \text{f -} $  images of elements of  $ A $  is known as the range of   $ f $  and can be denoted as  $ f(A) $ .

$ \text{Range}=f(A)=\left\{ f(x):x\in A \right\} $  

$ \text{f(A)}\subseteq \text{B} $  {Range \[\subseteq \]Co-domain}


Rule for Finding Range: 

First of all find the domain of  $ y=f(x) $ 

i. If domain  $ \in  $  finite number of points  $ \Rightarrow  $  range  $ \in  $  set of corresponding  $ f(x) $  values.

ii. If domain  $ \in R $  or  $ R- $  {Some finite points}

Put  $ y=f(x) $ 

Then express  $ x $   in terms of  $ y $ .From this find  $ y $  for  $ x $  to be defined. (i.e., find the values of  $ y $  for which  $ x $  exists).

iii. If domain  $ \in  $  a finite interval, find the least and greater value for range using monotonicity.

Note:

1. Question of format:

$ \left( y=\dfrac{Q}{Q};y=\dfrac{L}{Q};y=\dfrac{Q}{L} \right)\text{ } $  

$ Q\to  $  Quadratic

$ L\to  $  Linear

Range is found out by cross-multiplying & creating a quadratic in  $ 'x' $   & making \[D\ge 0\text{ }(\text{as }x\in R)\] 

2. Questions to determine the range of values in which the given expression  $ y=f(x) $  can be converted into  $ x $   (or some function of   $ x= $   expression in ‘ $ y $ ’ . 

Do this & apply method  $ (ii) $  .

3. Two functions  $ f $  &  $ g $  are said to be equal if

  1. Domain of  $ f= $   Domain of  $ g $  

  2. Co-domain of  $ f= $ Co-domain of  $ g $  

  3.  $ f(x)=g(x) $   $ \forall x\in  $  Domain


$ 3.3 $  Kinds of Functions:

Kinds of functions


Kinds of functions


Note:

  • Injective functions are called as one-to-one functions.

  • Surjective functions are also known as onto functions.

  • Bijective functions are also known as (one-to-one) and (onto) functions.


Relations Which Cannot be Categorized as a Function:

Relations which cannot be Categorized as a Function (a)


Relations which cannot be Categorized as a Function (a)


As not all elements of set $ A $  are associated with some elements of set  $ B $  . (Violation of– point  $ (i) $  – definition  $ 2.1 $ )


Relations which cannot be Categorized as a Function (b)


Relations which cannot be Categorized as a Function (b)


An element of set  $ A $  is not associated with a unique element of set  $ B $ , (violation of point  $ (ii) $   definition  $ 2.1 $ )


Methods to check one-one mapping:

1. Theoretically: 

$ f({{x}_{1}})=f({{x}_{2}}) $  

$ \Rightarrow {{x}_{1}}={{x}_{2}} $  

then  $ f(x) $  is one-one.


2. Graphically: 

A function is one-one, if no line parallel to  $ x-axis $  meets the graph of function at more than one point.


3. By Calculus: 

For checking whether  $ f(x) $  is One-One, find whether function is only increasing or only decreasing in their domain. If yes, then function is one-one, that is if  $ f'(x)\ge 0,\forall x\in  $  domain or, if  $ f'(x)\ge 0,\forall x\in  $  domain, then function is one-one.


$ 3.4 $ Some Standard Real Functions & their Graphs:

$ 3.4.1 $ Identity Function: 

The function  $ f:R\to R $   defined by 

$y=f\left( x \right)=x\forall x\in R$  is called identity function.


Identity Function



Identity Function


 $ 3.4.2 $ Constant Function: 

The function  $ f:R\to R $  defined by 

\[y=f\left( x \right)=c,\forall x\in R\] 


Constant Function


Constant Function


$ 3.4.3 $ Modulus Function: 

The function  $ f:R\to R $  defined by 

$f(x)=\left\{\begin{array}{cc}x ; & x \geq 0 \\ -x ; & x<0\end{array}\right.$ is called modulus function. It is denoted by 

$ y=f(x)=\left| x \right|$ 


Absolute value function


Absolute value function


It is also known as “Absolute value function”.


Properties of Modulus Function: 

The modulus function has the following properties:

  1. For any real number  $ x $ , we have  $ \sqrt{{{x}^{2}}}=\left| x \right| $ 

  2.  $ \left| xy \right|=\left| x \right|\left| y \right| $  

  3.  $ \left| x+y \right|\le \left| x \right|+\left| y \right| $    Triangle inequality

  4.  $ \left| x-y \right|\ge \left| \left| x \right|-\left| y \right| \right| $    Triangle inequality


 $ 3.4.4 $ Signum Function:

The function  $ f:R\to R $  define by 

$f(x)=\left\{\begin{array}{l}1: x>0 \\ 0: x=0 \\ -1: x<0\end{array}\right.$ is called signum function.

It is usually denoted as  $y=f(x)=\operatorname{sgn}(x) \mid$ 


Signum Function


Signum Function


Note:

$\operatorname{sgn}(x)= \begin{cases}\frac{|x|}{x} ; & x \neq 0 \\ 0 ; & x=0\end{cases}$


 $ 3.4.5 $  Greatest Integer Function: 

The function  $ f:R\to R $  defined as the greatest integer less than or equal to  $ x $  . 

It is usually denoted as \[y=f\left( x \right)=\left[ x \right]\].


Greatest Integer Function


Greatest Integer Function


Properties of Greatest Integer Function: 

If  $ n $  is an integer and  $ x $  is any real number between  $ n $  and   $ n+1 $  , then the greatest integer function has the following properties:

  1.  $ \left[ -n \right]=-\left[ n \right] $  

  2.  $ \left[ x+n \right]=\left[ x \right]+n $  

  3.  $ \left[ -x \right]=\left[ x \right]-1 $  

  4. $[x]+[-x]=\left\{\begin{array}{l}-1, \text { if } x \notin I \\ 0, \text { if } x \in I\end{array}\right.$

Note:

Fractional part of  $ x $ , denoted by  $ \left\{ x \right\} $  is given by \[x\left[ x \right]\] , Hence

$\{x\}=x-[x]=\left\{\begin{array}{cc}x-1 ; & 1 \leq x<2 \\ x & 0 \leq x \leq 1 \\ x+1 & -1 \leq x<0\end{array}\right.$


$ 3.4.6 $  Exponential Function:

\[f(x)={{a}^{x}}\], 

\[a > 0,a\ne 1\] 

Domain:  $ x\in R $  

Range:  $ f(x)\in \left( 0,\infty  \right) $  


Exponential Function a


Exponential Function a


Exponential Function b


Exponential Function b


$ 3.4.7 $  Logarithm Function:

$ f(x)={{\log }_{a}}x $  ,

$ a > 0,a\ne 1 $  

Domain: $ x\in \left( 0,\infty  \right) $  

Range: $ y\in R $  


Logarithm Function (a)


Logarithm Function (a)


Logarithm Function (b)


Logarithm Function (b)


a) The Principal Properties of Logarithms:

Let  $ M $  and  $ N $  be the arbitrary positive numbers,\[\text{a  0, a}\ne 1\text{, b  0, b}\ne 1\] 

  1. $ {{\log }_{b}}a=a\text{      }\Rightarrow a={{b}^{c}} $  

  2. $ {{\log }_{a}}\left( M.N \right)={{\log }_{a}}M+{{\log }_{a}}N $  

  3. $ {{\log }_{a}}\left( \dfrac{M}{N} \right)={{\log }_{a}}M-{{\log }_{a}}N $  

  4. $ {{\log }_{a}}{{M}^{N}}=N{{\log }_{a}}M $  

  5. \[{{\log }_{b}}a=\dfrac{{{\log }_{c}}a}{{{\log }_{c}}b},c > 0,c\ne 1\] 

  6. $\begin{equation} a^{\log _{c} b}=b^{\log _{c} a}, a, b, c>0, c \neq 1\end{equation}$

Note:

  • $ \text{lo}{{\text{g}}_{\text{a}}}\text{a = 1} $  

  • $ \text{lo}{{\text{g}}_{\text{b}}}\text{a }\text{. lo}{{\text{g}}_{\text{c}}}\text{b }\text{. lo}{{\text{g}}_{\text{a}}}\text{c = 1} $  

  • $ \text{lo}{{\text{g}}_{\text{a}}}\text{1 = 0} $  

  • $ {{\text{e}}^{\text{xlna}}}\text{ = }{{\text{e}}^{\text{xln}{{\text{a}}^{\text{x}}}}}\text{ = }{{\text{a}}^{\text{x}}} $  


b) Properties of Monotonicity of Logarithm:

  1. If \[\text{a   1, lo}{{\text{g}}_{\text{a}}}\text{x  lo}{{\text{g}}_{\text{a}}}\text{y       }\Rightarrow 0 < x < \text{y}\] 

  2. If  $ \text{0  a  1, lo}{{\text{g}}_{\text{a}}}\text{x  lo}{{\text{g}}_{\text{a}}}\text{y   }\Rightarrow \text{x  y  0} $  

  3. If  $ \text{a  1} $  then  $ \text{lo}{{\text{g}}_{\text{a}}}\text{x  p     }\Rightarrow \text{0  x  }{{\text{a}}^{\text{p}}} $  

  4. If  $ \text{a  1} $  then  $ \text{lo}{{\text{g}}_{\text{a}}}\text{x  p     }\Rightarrow \text{x  }{{\text{a}}^{\text{p}}} $  

  5. If  $ \text{0  a  1} $  then  $ \text{lo}{{\text{g}}_{\text{a}}}\text{x  p      }\Rightarrow \text{x  }{{\text{a}}^{\text{p}}} $  

  6. If  $ \text{0  a  1} $  then  $ \text{lo}{{\text{g}}_{\text{a}}}\text{x  p     }\Rightarrow \text{0  x  }{{\text{a}}^{\text{p}}} $  

Note:

  • The logarithm is positive if the exponent and base are on the same side of unity.

  • The logarithm is negative if the exponent and base are on opposite sides of unity.


4. Algebra of Real Function:

We'll learn how to add two real functions, remove one from another, multiply a real function by a scalar (a scalar is a real integer), multiply two real functions, and divide one real function by another in this part.


 $ 4.1 $  Addition of Two Real Functions:

Let  $ f:X\to R $  and  $ g:X\to R $  by any two real functions, where  $ x\subset R $ . Then, we define  $ \left( f+g \right):X\to R $  by 

$ \left( f+g \right)\left( x \right)=f\left( x \right)+g\left( x \right) $  for all  $ x\in X $ .


$ 4.2 $ Subtraction of a Real Function from another:

Let  $ f:X\to R $ be any two any two real functions, where  $ x\subset R $ .

Then, we define  $ \left( f-g \right):X\to R $  by 

$ \left( f-g \right)\left( x \right)=f\left( x \right)-g\left( x \right) $  for all  $ x\in X $ .


$ 4.3 $ Multiplication by a Scalar:

Let  $ f:X\to R $  be a real valued function and  $ \alpha  $  be a scalar. 

Here by scalar, we mean a real number. 

Then the product  $ \alpha f $  is a function from  $ X $  to  $ R $  defined as  $ \left( \alpha f \right)\left( x \right)=\alpha f\left( x \right),x\in X $ .


$ 4.4 $  Multiplication of Two Real Functions:

The product (or multiplication) of two real functions  $ f:X\to R $ and  $ g:X\to R $ is a function  $ fg:X\to R $  defined as

$ \left( fg \right)\left( x \right)=f\left( x \right)g\left( x \right) $  for all  $ x\in X $ .

This is also known as pointwise multiplication.


$ 4.5 $ Quotient of Two Real Functions:

Let  $ f $  and  $ g $  be two real functions defined from  $ X\to R $  where  $ X\subset R $ . 

The quotient of  $ f $  by  $ g $  denoted by  $ \dfrac{f}{g} $  a is a function defined as  $ \left( \dfrac{f}{g} \right)\left( x \right)=\dfrac{f\left( x \right)}{g\left( x \right)} $  , 

Provided   $ g\left( x \right)\ne 0,x\in X $ .


 $ 4.6 $  Even and Odd Functions

  • Even Function: 

i. \[f\left( -x \right)=f\left( x \right),\forall x\in \] Domain

ii. The graph of an even function  $ y=f\left( x \right) $  is symmetric about the  $ y- $  axis, that is  $ \left( x,y \right) $  lies on the graph  $ \Leftrightarrow \left( -x,y \right) $  lies on the graph.


Even Function


Even Function


  • Odd Function: 

i. $ f\left( x \right)=-f\left( x \right),\forall x\in  $  Domain

ii. The graph of an odd function  $ y=f\left( x \right) $ is symmetric about origin that is if point  $ \left( x,y \right) $  is on the graph of an odd function, then  $ \left( -x,-y \right) $  will also lie on the graph.


Odd Function


Odd Function


5. Periodic Function

  • Definition: 

A function  $ f(x) $ is said to be periodic function, if there exists a positive real number  $ T $  , such that 

$ f\left( x+T \right)=f\left( x \right),\forall x\in R $  

Then,  $ f(x) $ is a periodic function where least positive value of T is called fundamental period. 

  • Graphically: 

The function is said to be periodic if the graph repeats at a set interval, and its period is the width of that interval.


Some Standard Results on Periodic Functions:


Functions

Periods

$ i $ 

$ \text{si}{{\text{n}}^{\text{n}}}\text{x, co}{{\text{s}}^{\text{n}}}\text{x, se}{{\text{c}}^{\text{n}}}\text{x, cose}{{\text{c}}^{\text{n}}}\text{x} $ 

$ \pi  $  ; if  $ n $  is even

$ 2\pi  $  ;(if  $ n $ is odd or fraction)

$ ii $ 

$ \text{ta}{{\text{n}}^{\text{n}}}\text{x, co}{{\text{t}}^{\text{n}}}\text{x} $ 

$ \pi  $  ;  $ n $ is even or odd

$ iii $ 

$|\sin x|,|\cos x|,|\tan x|$

$|\cot x|,|\sec x|,|\operatorname{cosec} x|$

$ \pi  $ 

$ iv $ 

$ x-\left[ x \right],\left[ . \right] $  represents greatest integer function

$ 1 $ 

$ v $ 

Algebraic functions for example $ \sqrt{\text{x}}\text{, }{{\text{x}}^{\text{2}}}\text{, }{{\text{x}}^{\text{3}}}\text{+5, }..... $  etc.

Period does not exist


Properties of Periodic Function:

i. If  $ f\left( x \right) $  is periodic with period  $ T $ , then

  1. $ c.f\left( x \right) $  is periodic with period  $ T $  

  2. $ f\left( x\pm c \right) $  is periodic with period  $ T $  

  3. $ f\left( x \right)\pm c $  is periodic with period  $ T $  

Where  $ c $  is any constant

ii. If  $ f\left( x \right) $  is periodic with period   $ T $ , then

$ kf\left( cx+d \right) $  has period  $ \dfrac{T}{\left| c \right|} $  

That is Period can be only affected by coefficient of  $ x $  where \[\text{k, c, d}~\in \] constant.

iii. If   $ {{f}_{1}}\left( x \right),{{f}_{2}}\left( x \right) $  are periodic functions with periods  $ {{T}_{1}},{{T}_{2}} $  respectively, 

Then we have,

$ h\left( x \right)=a{{f}_{1}}\left( x \right)\pm b{{f}_{2}}\left( x \right) $  has period as, \[\text{LCM}\] of  $ \left\{ {{T}_{1}},{{T}_{2}} \right\} $  

Note:

  1. LCM of  $ \left( \dfrac{a}{b},\dfrac{c}{d},\dfrac{e}{f} \right)=\dfrac{LCM\text{ of }(a,c,e)\text{ }}{HCF\text{ of }(b,d,f)} $  

  2. \[\text{LCM}\] of rational and rational always exists. 

\[\text{LCM}\] of irrational and irrational sometime exists. 

But \[\text{LCM}\] of rational and irrational never exists.

For example, \[\text{LCM}\] of  $ \left( \text{2 }\!\!\pi\!\!\text{ , 1, 6 }\!\!\pi\!\!\text{ } \right) $  is not possible because  $ \text{2 }\!\!\pi\!\!\text{ , 6 }\!\!\pi\!\!\text{ }\in  $  irrational and  $ 1\in  $  rational.


Class 11 Maths Revision Notes for Chapter 2 Relations and Functions

These notes are available in PDF form on the official website of Vedantu. Students can download them on their devices so that later they do not need an internet connection to go through the Relations and Functions Class 11 Notes. This makes revisions quick and can be done anytime, anywhere. If you want to study in a group, print out the Chapter 2 Maths Class 11 Notes and have a group study.

Let us know further what you will be getting to know in the notes of maths class 11 chapter 2.

 

Cartesian Product of Sets in Relations and Functions Class 11 Explanation

A pair of elements clustered together in a specific order is called the ordered pair  Plainly, (a,b)≠(b,a)(a,b)≠(b,a).

The Cartesian product of two sets A and B is mathematically given as:

A × B = [{a, b}: a ∈ A, b ∈ B}.

Specifically, R × R = [{x, y}: x, y ∈ R)

and R × R × R = {x, y, z}: x, y, z ∈ R]

 

Concept of Relation in Class 11 Maths Relations and Functions Notes      

This section of class 11 math chapter 2 will include fundamentals about relations. A  relation is usually represented by letter ‘R’ from a set A to a set B is a subset of the Cartesian product A × B, which is attained by interpreting a relationship between the 1st element x and the 2nd element y of the ordered pairs in A × B, i.e., R⊆A×BR⊆A×B.

Number of Relations

Let P and Q be two non-empty finite sets, consisting of m and n elements respectively, then the total number of relations from P to Q is 2mn.

Inverse Relation

Let R ⊆ P x Q be a relation from P to Q. Then inverse of a relation R–1 ⊆ Q x P is described by R–1 = {≤ q, p): ≤ p, q) ∈ R, p ∈ P, q ∈ Q}. It is understandable now

p R q ↔ q R–1 p

Example: Let P = [1, 2, 3, 4], Q = {p, q, r} and R = {≤ 1, p), ≤ 1, r), ≤ 2, p}]. 

Then, R–1 = {≤ p, 1), ≤ r, 1), ≤ p, 2)}

Relations in a Set

Let R be a relation from P to Q. If Q = P, then R is said to be a relation in P. Hence, relation in a set P is a subset of P x P.

Identity Relation in s Set

R is said to be in identity relation if ≤ p, q ∈ R if p = q, p ∈ P, Q ∈ P. Conversely, each element of P is related to only itself.

Universal Relation in a Set

Let P be any set and R be the set P x P, then R is termed as the Universal Relation in P.

Void Relation in a Set

ϕ is known as the Void Relation in a set.

 

Domain In Class 11 Maths Relations and Functions Notes     

The domain of relation- R is the set of all the 1st elements of the ordered pairs in R. Domain R = {p:(p,q)∈R}{p:(p,q)∈R}.

 

Range In Class 11 Maths Relations and Functions Notes

The range of the relation- R is said to be the set of all 2nd elements of the ordered pairs in R. Range R = {q:(p,q)∈R}{q:(p,q)∈R}.

 

Function in Class 11 Maths Relations and Functions Notes   

A function represented by the letter ‘f’ from a set P to a set Q is a particular kind of relation for which every element x of set P consists of one and only one image y in set Q. Mathematically, we write f: P→Q, where f(x) = y.

 

Domain and Codomain in Class 11 Maths Relations and Functions Notes

A set P is known as the domain of function ‘f’ and the set Q is known as the co-domain of function ‘f’.

 

Image and Preimage In Class 11 Maths Relations and Functions Notes

If the element x of P corresponds to y∈Qy∈Q in the function ‘f’, then we call it as yy is the image of x under f and we mathematically write it as: f [x] =yf [x] =y. On the other hand, Pre-image is when If f [x] =yf [x] =y, then we say that xx is a preimage of y.

 

Kinds of Functions 

  • One-to-One or Injective functions - For every element in set A, there is only one corresponding element in set B. There could be elements in set B, where there are no matching elements in set A.

  • Onto or Surjective Functions - In such functions, every element of set B has one or more than one matching element in set A.

  • Bijective functions are those that are one-to-one as well as Onto. This is also referred to as the perfect pairing where each member has one matching element in the other set, and no element is left out.

Important Topics Covered in this Chapter 

Some important topics covered in Relations and Functions are as follows.

  • What are Relations and Functions

  • Cartesian products of sets

  • Range and Domain

  • Representation of a relation

  • Function as a special kind of relation

  • Function as a correspondence

  • Types of relations 

  • Types of functions 

  • The domain of real functions

  • Some standard real functions and their graphs

  • Operations on real functions


Benefits of Referring NCERT Solutions Provided by Vedantu

We at Vedantu provide you with all the study material that you are searching for in your preparation and examination. Here you will get NCERT Solutions, syllabus, previous year's paper’s solutions for exams, important questions etc.

The syllabus is provided here as per the CBSE guidelines. Revision notes of NCERT are prepared by highly-experienced teachers.  The benefits of Vedantu are as follows.

  • Solutions in Easy Language

The revision notes of each chapter are prepared by different experts and scholars in the subject matter. The study materials offered by Vedantu are made available to students after rigorous research to ensure that all the given inputs are authentic and to the point.

  • Focus on Fundamental Concepts

NCERT Class 11 chapter-wise notes not only cover all the topics in the syllabus but also vividly describe all the fundamental and basic concepts required to understand these topics. 

  • Sufficient Material to Practice

Preparation for any exam is incomplete without practice. Students are required to practice questions in order to perform well in examinations. In Vedantu you will get sufficient material to practice with. 

  • Important Topics

Important topics given in the chapter are discussed from the point of view of examination. 

  • Better Preparation

Class 11 Maths NCERT Solutions will resolve the doubts of students quickly and their preparation for examinations will be boosted. With the help of these revision notes, students will grab complex concepts quickly.

Conclusion

In order to give the students a step-by-step introduction to Relations and Functions, Vedantu experts created Revision Notes of Relation and Function Class 11.  The NCERT curriculum is carefully followed in the creation of all the content and notes for Relations and Functions Class 11, allowing the students to use the content to get ready for the test.  Students can also download the PDF notes of other chapters from our website. 

FAQs on Relations and Functions Class 11 Notes CBSE Maths Chapter 2 [Free PDF Download]

1. Where can I find the class 11 Relations and Functions notes?

CBSE class 11 Chapter 2 Relations And Functions Notes Mathematics are available for free download in PDF from Vedantu e-learning website. It is currently the best portal for CBSE students which provides quick revision notes, sample papers, test papers for maths and other subjects for free in PDF file. 


Vedantu has given revision notes for class 11 chapter 2- Relations And Functions Notes for most effective preparation of CBSE exams as well school based annual examinations.

2. What is the best use of class 11 maths Relations and Functions notes?    

The notes of maths class 11 chapter 2 designed by Vedantu are the comprehensive notes that covers the latest syllabus of CBSE and NCERT. These notes include all the topics provided in NCERT class 11 Mathematics text book. Students searching for quick mathematical revision notes can download CBSE guide revision notes from Vedantu website. 


Revision notes during exam days are of the best tips recommended by teachers. Relations And Functions Chapter 2 Mathematics in PDF format can help you score high in exams.

3. What do you understand by relation, Class 11 Maths Chapter 2?

A relation is a subset of the cartesian product set A x B which are the ordered pairs. The subset is obtained by making a relationship between the first and the second element of A x B. The relation may be represented in the Roster form or builder form. It may also be represented in the visual form by an arrow diagram. In relation R, the set of all first elements is called the domain and the set of all second elements is called the range. 

4. How important is Class 11 Maths Chapter 2 “Relations and Functions”?

Class 11 Maths Chapter 2 “Relations and Functions” is an important chapter as students will get a few questions from this chapter in their exams. Therefore, students of Class 11 have to understand the basic concepts given in Maths Chapter 2 to score high marks. They can refer to the Class 11 Maths Chapter 2 Revision Notes for understanding the basic concepts. All notes for Class 11 Maths Chapter 2 “Relations and Functions” are available on Vedantu for proper understanding of the concepts.

5. What are the main concepts covered in Class 11 Maths Chapter 2 “Relations and Functions”?

Students of Class 11 Maths will study the concepts of relations, functions, cartesian product of sets, and ordered pairs in Class 11 Maths Chapter 2. It is an important topic and students should understand the basic concepts of relations and functions given in the chapter. They should practice all NCERT questions given in the Class 11 Maths book for understanding the main concepts. Students can visit Class 11 Maths Revision Notes for Chapter 2 to download Class 11 Maths Chapter 2 Revision Notes from Vedantu at free of cost.

6. What are the different kinds of functions in Class 11 Maths Chapter 2 “Relations and Functions”?

In Class 11 Maths Chapter 2 “Relations and Functions”, students will study different kinds of functions such as one-to-one or injective functions, onto or surjective functions, and Bijective functions. Students can study from the Class 11 Maths Chapter 2 Relations and Functions Revision Notes available on Vedantu’s website and on the Vedantu app at free of cost. They can study different kinds of functions in detail from the notes and can easily understand the concepts of relations and functions.

7. How can I download Class 11 Maths Revision Notes Chapter 2 “Relations and Functions”?

Students can easily download Class 11 Maths Revision Notes Chapter 2 “Relations and Functions” from Vedantu’s website for free. They have to visit the website and search for the Class 11 Maths Notes Chapter 2 or visit the page Class 11 Maths Revision Notes for Chapter 2. After clicking the link, click the download button. A file will download on your device in PDF format so that you can use it when needed. You can save the PDF file of Class 11 Maths Revision Notes Chapter 2 on your device.