Which one of the following reactions would be the best for the formation of 2-bromobutane
(1) $CH_3CH=CHCH_2CH_3 + HBr \rightarrow$
(2) $CH_3CH_2CH=CH_2 + HBr \rightarrow$
(3) $CH_3CH=CHCH_3 + {Br}_2 \rightarrow$
(4) $CH_3CH_2CH=CH_2 + HBr \ Peroxide \rightarrow$
A. (1)
B. (2)
C. (3)
D. (4)
Answer
55.5k+ views
Hint: Addition reaction of alkene has a characteristic feature it goes through a different type of mechanism:
(a) Classical carbocation mechanism and (b) non-classical carbocation mechanism
In classical carbocation, the mechanism charge is completely developed on the carbon atom and in non-classical carbocation, the charge is partially developed on the carbon atom.
Complete Step by Step Answer:
According to the addition mechanism of the alkene as the formation of carbocation takes place first the electrophile gets attached to the carbon which contains more no. of hydrogen atoms attached to the carbon and then the nucleophile gets attached to the carbon that contains less number of hydrogen atoms, because according to markovnikov’s rule the nucleophile will attach with the carbon which contains less number of hydrogen.
Now according to the addition reaction the product of the given reactions are:
(1) $CH_3CH=CHCH_2CH_3 + HBr \rightarrow \\
CH_3CHBr-CH_2CH_2CH_3+CH_3CH_2-CHBrCH_2CH_3$
In the given reaction two products will be formed 2-bromopentane (minor) and 3- bromopentane (major).
(2) $CH_3CH_2CH=CH_2 + HBr \rightarrow C H_3CH_2CHBr-CH_3+CH_3CH_2CH_2CH_2Br$
In the given reaction two products will be formed 2-bromobutane (major) and 1- bromobutane (minor).
(3) $CH_3CH=CHCH_3 + {Br}_2 \rightarrow C H_3CHBr CHBrCH_3$
In the given reaction one product will be formed which is dihalide 2,3-dibromobutane.
(4) $CH_3CH_2CH=C{Hr}_2 + \ HBr + Peroxide \rightarrow C H_3CH_2CH_2CH_2Br$
In the given reaction the product formed will be 1- bromobutane because in presence of peroxide the mechanism goes through anti-markovnikov’s rule.
Thus, we can see that only $CH_3CH_2CH=CH_2$ on reaction with HBr produces 2-bromobutane so it is best for the formation of 2-bromobutane.
Thus, Option (B) is correct
Note: Not all reactions follow markovnikov’s rule. In the second reaction 2- bromobutane contains a chiral carbon which means it will have stereoisomers. It will have two stereoisomers; they will be enantiomers that means mirror image of each other.
(a) Classical carbocation mechanism and (b) non-classical carbocation mechanism
In classical carbocation, the mechanism charge is completely developed on the carbon atom and in non-classical carbocation, the charge is partially developed on the carbon atom.
Complete Step by Step Answer:
According to the addition mechanism of the alkene as the formation of carbocation takes place first the electrophile gets attached to the carbon which contains more no. of hydrogen atoms attached to the carbon and then the nucleophile gets attached to the carbon that contains less number of hydrogen atoms, because according to markovnikov’s rule the nucleophile will attach with the carbon which contains less number of hydrogen.
Now according to the addition reaction the product of the given reactions are:
(1) $CH_3CH=CHCH_2CH_3 + HBr \rightarrow \\
CH_3CHBr-CH_2CH_2CH_3+CH_3CH_2-CHBrCH_2CH_3$
In the given reaction two products will be formed 2-bromopentane (minor) and 3- bromopentane (major).
(2) $CH_3CH_2CH=CH_2 + HBr \rightarrow C H_3CH_2CHBr-CH_3+CH_3CH_2CH_2CH_2Br$
In the given reaction two products will be formed 2-bromobutane (major) and 1- bromobutane (minor).
(3) $CH_3CH=CHCH_3 + {Br}_2 \rightarrow C H_3CHBr CHBrCH_3$
In the given reaction one product will be formed which is dihalide 2,3-dibromobutane.
(4) $CH_3CH_2CH=C{Hr}_2 + \ HBr + Peroxide \rightarrow C H_3CH_2CH_2CH_2Br$
In the given reaction the product formed will be 1- bromobutane because in presence of peroxide the mechanism goes through anti-markovnikov’s rule.
Thus, we can see that only $CH_3CH_2CH=CH_2$ on reaction with HBr produces 2-bromobutane so it is best for the formation of 2-bromobutane.
Thus, Option (B) is correct
Note: Not all reactions follow markovnikov’s rule. In the second reaction 2- bromobutane contains a chiral carbon which means it will have stereoisomers. It will have two stereoisomers; they will be enantiomers that means mirror image of each other.
Last updated date: 31st May 2023
•
Total views: 55.5k
•
Views today: 0.13k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
