
Two poles of heights $6m$and $11m$ stand on a plane ground. If the distance between the feet of the poles is $12m$, find the distance between their tops.
Answer
219.9k+ views
Hint- This question can be solved by using Pythagoras theorem.

It is given that
Height of the first pole is $AB = 6m$
Height of the second pole is $CD = 11m$
Distance between the feet of poles is $AC = 12m$
We have to find the distance between the tops of pole, i.e. $BD$
Let us draw a line $BE \bot DC$
Since, it is clear from the figure that $AC \bot DC$ as pole is vertical to ground.
So, $BE = AC = 12m$
Similarly, $AB = EC = 6m$
Now,
$
DE = DC - EC \\
DE = 11 - 6 \\
DE = 5m \\
$
It is clear from the figure that the angle$\angle BED$ , is ${90^ \circ }$ because$BE \bot DC$
Thus, the triangle $BED$ is a right angled triangle.
By using Pythagoras theorem in the right angle triangle.
$
{\left( {hyp} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2} \\
\Rightarrow {\left( {BD} \right)^2} = {5^2} + {12^2} \\
{\text{or }}{\left( {BD} \right)^2} = 25 + 144 \\
{\text{or }}{\left( {BD} \right)^2} = 169 \\
{\text{or }}BD = \sqrt {169} \\
BD = 13m \\
$
Hence, the distance between the tops of the pole is $13m$.
Note- Whenever we face such types of questions the key concept is that we should draw its figure and then analyze from the figure what we have to find. Like in this question we find the distance between the two poles from their tops by using Pythagoras theorem.

It is given that
Height of the first pole is $AB = 6m$
Height of the second pole is $CD = 11m$
Distance between the feet of poles is $AC = 12m$
We have to find the distance between the tops of pole, i.e. $BD$
Let us draw a line $BE \bot DC$
Since, it is clear from the figure that $AC \bot DC$ as pole is vertical to ground.
So, $BE = AC = 12m$
Similarly, $AB = EC = 6m$
Now,
$
DE = DC - EC \\
DE = 11 - 6 \\
DE = 5m \\
$
It is clear from the figure that the angle$\angle BED$ , is ${90^ \circ }$ because$BE \bot DC$
Thus, the triangle $BED$ is a right angled triangle.
By using Pythagoras theorem in the right angle triangle.
$
{\left( {hyp} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2} \\
\Rightarrow {\left( {BD} \right)^2} = {5^2} + {12^2} \\
{\text{or }}{\left( {BD} \right)^2} = 25 + 144 \\
{\text{or }}{\left( {BD} \right)^2} = 169 \\
{\text{or }}BD = \sqrt {169} \\
BD = 13m \\
$
Hence, the distance between the tops of the pole is $13m$.
Note- Whenever we face such types of questions the key concept is that we should draw its figure and then analyze from the figure what we have to find. Like in this question we find the distance between the two poles from their tops by using Pythagoras theorem.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

