Answer
Verified
447.6k+ views
Hint: In this problem, use a combination method to solve it. In the question student gets $150$ marks such that he gets at least $60$ percent in two papers. So we split $150$ according to it. And perform questions using a combination method also in a number of ways according to the given question.
Formula: $^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
Complete step by step solution: Given that-
Student gets $150$ marks such that he gets at least $60$ percent in two papers.
$150 = \left( {60 + 60 + 30} \right)$
Because $60$ percent in two papers and remaining are$30$ to complete$150$.
Number of ways$ = $ coefficient of ${x^{150}}$ is
$\left\{ {{{\left( {{x^{60}} + {x^{61}} + .......{x^{100}}} \right)}^2}\left( {1 + x + {x^{2 + }}.........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
$\left\{ {{{\left( {1 + x + {x^{2 + }}.........{x^{40}}} \right)}^2}\left( {1 + x + {x^2} + .........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
\[
{\left( {\dfrac{{1 - {x^{41}}}}{{1 - x}}} \right)^2}\left( {\dfrac{{1 - {x^{31}}}}{{1 - x}}} \right) \\
\Rightarrow {\left( {1 - x} \right)^{ - 3}} \\
\Rightarrow {x^{30 + 3 - 1}}{C_{3 - 1}} \\
{ \Rightarrow ^{32}}{C_2} \\
\]
Thus the student gets $60$ percent marks in first two papers to get $150$ marks
Number of ways ${ = ^{32}}{C_2}$
But the two paper at least $60$ percent, can be chosen out of $3$ papers
Number of ways${ = ^3}{C_2}$
Required number of ways ${ = ^3}{C_2}{ \times ^{32}}{C_2}$
To solve above combination use formula
$^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
${ = ^3}{C_2}{ \times ^{32}}{C_2}$
$
\dfrac{{3!}}{{2! \times \left( {2 - 1} \right)!}} \times \dfrac{{32!}}{{2!\left( {32 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{2! \times 1!}} \times \dfrac{{32!}}{{2! \times 30!}} \\
\Rightarrow \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}} \times \dfrac{{32 \times 31 \times 30 \times 29........2 \times 1}}{{2 \times 1 \times 30 \times 29.....2 \times 1}} \\
\Rightarrow 3 \times 496 \\
\Rightarrow 1488 \\
$ To solve it we get:
Number of ways $ = 1488$
Hence option B is the correct answer.
Note: First we have the total number of ways according to the question. By making these combinations we have a required number of total ways. After that we solve the number of ways by using the formula. This we get the total number of ways a student gets $150$ marks such that he gets at least $60$ percent in two papers. Hence the answer is 1488 .
Formula: $^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
Complete step by step solution: Given that-
Student gets $150$ marks such that he gets at least $60$ percent in two papers.
$150 = \left( {60 + 60 + 30} \right)$
Because $60$ percent in two papers and remaining are$30$ to complete$150$.
Number of ways$ = $ coefficient of ${x^{150}}$ is
$\left\{ {{{\left( {{x^{60}} + {x^{61}} + .......{x^{100}}} \right)}^2}\left( {1 + x + {x^{2 + }}.........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
$\left\{ {{{\left( {1 + x + {x^{2 + }}.........{x^{40}}} \right)}^2}\left( {1 + x + {x^2} + .........{x^{30}}} \right)} \right\}$
Coefficient of ${x^{30}}$ is
\[
{\left( {\dfrac{{1 - {x^{41}}}}{{1 - x}}} \right)^2}\left( {\dfrac{{1 - {x^{31}}}}{{1 - x}}} \right) \\
\Rightarrow {\left( {1 - x} \right)^{ - 3}} \\
\Rightarrow {x^{30 + 3 - 1}}{C_{3 - 1}} \\
{ \Rightarrow ^{32}}{C_2} \\
\]
Thus the student gets $60$ percent marks in first two papers to get $150$ marks
Number of ways ${ = ^{32}}{C_2}$
But the two paper at least $60$ percent, can be chosen out of $3$ papers
Number of ways${ = ^3}{C_2}$
Required number of ways ${ = ^3}{C_2}{ \times ^{32}}{C_2}$
To solve above combination use formula
$^n{C_r} = \dfrac{{n!}}{{r! \times \left( {n - r} \right)!}}$
${ = ^3}{C_2}{ \times ^{32}}{C_2}$
$
\dfrac{{3!}}{{2! \times \left( {2 - 1} \right)!}} \times \dfrac{{32!}}{{2!\left( {32 - 2} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{2! \times 1!}} \times \dfrac{{32!}}{{2! \times 30!}} \\
\Rightarrow \dfrac{{3 \times 2 \times 1}}{{2 \times 1 \times 1}} \times \dfrac{{32 \times 31 \times 30 \times 29........2 \times 1}}{{2 \times 1 \times 30 \times 29.....2 \times 1}} \\
\Rightarrow 3 \times 496 \\
\Rightarrow 1488 \\
$ To solve it we get:
Number of ways $ = 1488$
Hence option B is the correct answer.
Note: First we have the total number of ways according to the question. By making these combinations we have a required number of total ways. After that we solve the number of ways by using the formula. This we get the total number of ways a student gets $150$ marks such that he gets at least $60$ percent in two papers. Hence the answer is 1488 .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths