
The value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is
Answer
233.1k+ views
Hint: Find the roots of quadratic equations to know in which limit the value of modulus will be positive and negative. Then, write the modulus in expanded form with their appropriate limits and integrate the function.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Formula Used:
Integration formula –
$\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
Complete step by step solution:
Given that,
$\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} - - - - - (1)$
Here, $3{x^2} - 3x - 6 = 0$
${x^2} - x - 2 = 0$
${x^2} - 2x + x - 2 = 0$
$x(x - 2) + 1(x - 2) = 0$
$(x + 1)(x - 2) = 0$
$x = - 1,x = 2$
$ \Rightarrow $ the value of $\left| {3{x^2} - 3x - 6} \right|$ will be negative from $ - 1 \leqslant x \leqslant 2$
Now, Equation (1) will be
$ = 3\left[ {\int\limits_{ - 2}^2 {\left| {{x^2} - x - 2} \right|dx} } \right]$
$ = 3\left[ {\int\limits_{ - 2}^{ - 1} {\left( {{x^2} - x - 2} \right)dx} + \int\limits_{ - 1}^2 { - \left( {{x^2} - x - 2} \right)dx} } \right]$
$ = 3\left[ {\left[ {\dfrac{{{x^3}}}{3} - \dfrac{{{x^2}}}{2} - 2x} \right]_{ - 2}^{ - 1} + \left[ { - \dfrac{{{x^3}}}{3} + \dfrac{{{x^2}}}{2} + 2x} \right]_{ - 1}^2} \right]$
$ = 3\left[ {\left[ {\left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - \dfrac{{{{\left( { - 1} \right)}^2}}}{2} - 2\left( { - 1} \right)} \right) - \left( {\dfrac{{{{\left( { - 2} \right)}^3}}}{3} - \dfrac{{{{\left( { - 2} \right)}^2}}}{2} - 2\left( { - 2} \right)} \right)} \right] + \left[ {\left( { - \dfrac{{{{\left( 2 \right)}^3}}}{3} + \dfrac{{{{\left( 2 \right)}^2}}}{2} + 2\left( 2 \right)} \right) - \left( { - \dfrac{{{{\left( { - 1} \right)}^3}}}{3} + \dfrac{{{{\left( { - 1} \right)}^2}}}{2} + 2\left( { - 1} \right)} \right)} \right]} \right]$
$ = 3\left[ {\left( {\dfrac{{ - 1}}{3} - \dfrac{1}{2} + 2} \right) - \left( {\dfrac{{ - 8}}{3} - \dfrac{4}{2} + 4} \right) + \left( { - \dfrac{8}{3} + \dfrac{4}{2} + 4} \right) - \left( {\dfrac{1}{3} + \dfrac{1}{2} - 2} \right)} \right]$
$ = 3\left[ {\dfrac{7}{3} + \dfrac{3}{2} - 2 + \dfrac{{\left( { - 9} \right)}}{3} + \dfrac{3}{2} + 6} \right]$
$ = 3\left[ {\dfrac{{ - 2}}{3} + 7} \right]$
$ = 3\left[ {\dfrac{{ - 2 + 21}}{3}} \right]$
$ = 19$
Hence, the value of $\int\limits_{ - 2}^2 {\left| {3{x^2} - 3x - 6} \right|dx} $ is $19$.
Note: In such questions, students must remember that after finding the roots always check whether those values or that range are giving positive value or negative value then find the limit accordingly. Put the limit only till the given range. While taking any number common during integration, take that constant outside and don't remove that directly.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

Makar Sankranti Wishes: Happy Makar Sankranti Wishes in Marathi, Hindi, Kannada, and English

