
The total number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions are:
A.2.2 \[{{N}_{A}}\]
B.4.2\[{{N}_{A}}\]
C.1.6\[{{N}_{A}}\]
D.3.2\[{{N}_{A}}\]
Answer
220.8k+ views
Hint: Total number of valence electrons in an ion is calculated by using the following formula
Number of valence electrons in an ion = Number of moles of the given ion
$\times$ Number of valence electrons in the given ion $\times$ Avogadro number
Complete step by step answer:
-Given mass of azide ion (\[{{N}_{3}}^{-}\]) is = 4.2g
-We have to calculate the molar mass of azide ion (\[{{N}_{3}}^{-}\]).
-Atomic weight of Nitrogen is 14.
-Number of nitrogen atoms in azide ion (\[{{N}_{3}}^{-}\]) is three.
-Step-1:
So, the molar mass will be\[3\times 14=42\].
Number of moles of azide ion (\[{{N}_{3}}^{-}\]) \[\begin{align}
& =\dfrac{4.2}{42} \\
& =0.1\text{ }moles \\
\end{align}\]
-Step-2:
Number of valence electrons in one nitrogen atom are five.
The number of valence electrons in azide ion (\[{{N}_{3}}^{-}\])
\[\begin{align}
& =(3\times 5)+1 \\
& =16 \\
\end{align}\]
-Substitute the number of moles and number of valence electrons in the following equation to get the number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions.
Number of valence electrons in an ion = Number of moles of the given ion
× Number of valence electrons in the given ion ×Avogadro number
\[\begin{align}
& \text{ = 0}\text{.1 }\times \text{ 16 }\times \text{ }{{\text{N}}_{\text{A}}} \\
& \text{ = 1}\text{.6 }{{\text{N}}_{\text{A}}}\text{ } \\
\end{align}\]
So, the correct option is C.
Note: Don’t be confused with the words valence electrons and number of moles.
Valence electron means the electron which is present in outer most orbit is called valence electron.
Number moles is the ratio of given weight of the atom or ion and atomic weight of the atom or ion.
Number of valence electrons in an ion = Number of moles of the given ion
$\times$ Number of valence electrons in the given ion $\times$ Avogadro number
Complete step by step answer:
-Given mass of azide ion (\[{{N}_{3}}^{-}\]) is = 4.2g
-We have to calculate the molar mass of azide ion (\[{{N}_{3}}^{-}\]).
-Atomic weight of Nitrogen is 14.
-Number of nitrogen atoms in azide ion (\[{{N}_{3}}^{-}\]) is three.
-Step-1:
So, the molar mass will be\[3\times 14=42\].
Number of moles of azide ion (\[{{N}_{3}}^{-}\]) \[\begin{align}
& =\dfrac{4.2}{42} \\
& =0.1\text{ }moles \\
\end{align}\]
-Step-2:
Number of valence electrons in one nitrogen atom are five.
The number of valence electrons in azide ion (\[{{N}_{3}}^{-}\])
\[\begin{align}
& =(3\times 5)+1 \\
& =16 \\
\end{align}\]
-Substitute the number of moles and number of valence electrons in the following equation to get the number of valence electrons in 4.2g of \[{{N}_{3}}^{-}\]ions.
Number of valence electrons in an ion = Number of moles of the given ion
× Number of valence electrons in the given ion ×Avogadro number
\[\begin{align}
& \text{ = 0}\text{.1 }\times \text{ 16 }\times \text{ }{{\text{N}}_{\text{A}}} \\
& \text{ = 1}\text{.6 }{{\text{N}}_{\text{A}}}\text{ } \\
\end{align}\]
So, the correct option is C.
Note: Don’t be confused with the words valence electrons and number of moles.
Valence electron means the electron which is present in outer most orbit is called valence electron.
Number moles is the ratio of given weight of the atom or ion and atomic weight of the atom or ion.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

