
The sum of the coefficients of the expression ${{\left( \dfrac{1}{x}+2x \right)}^{6}}$ is equal to
[a] 1024
[b] 729
[c] 243
[d] 512
[e] 64
Answer
217.5k+ views
Hint: Expand the given expression by using binomial theorem and find the coefficients of the terms involved in the expression. Calculate the sum of these coefficients to get the result. Instead of making use of binomial theorem, you can also use Pascal's triangle to get the binomial coefficients.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Complete step-by-step answer:
We know from binomial theorem;
${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+\ldots +{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$
Putting n = 6, $x=\dfrac{1}{x}$ and $y=2x$ in the above expression, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={}^{6}{{C}_{0}}{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Now we know that \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Using the above formula, we get
$\begin{align}
& {}^{6}{{C}_{0}}=\dfrac{6!}{0!\left( 6-0 \right)!}=\dfrac{6!}{6!}=1 \\
& {}^{6}{{C}_{1}}=\dfrac{6!}{1!\left( 6-1 \right)!}=\dfrac{6\times 5!}{1!5!}=6 \\
& {}^{6}{{C}_{2}}=\dfrac{6!}{2!\left( 6-2 \right)!}=\dfrac{6\times 5\times 4!}{2!4!}=\dfrac{30}{2}=15 \\
& {}^{6}{{C}_{3}}=\dfrac{6!}{3!3!}=\dfrac{6\times 5\times 4\times 3!}{3!3!}=\dfrac{6\times 5\times 4}{6}=20 \\
\end{align}$
We know that ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$
Using we get
$\begin{align}
& {}^{6}{{C}_{4}}={}^{6}{{C}_{2}}=15 \\
& {}^{6}{{C}_{5}}={}^{6}{{C}_{1}}=6 \\
& {}^{6}{{C}_{6}}={}^{6}{{C}_{0}}=1 \\
\end{align}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=1{{\left( \dfrac{1}{x} \right)}^{6}}{{\left( 2x \right)}^{0}}+6{{\left( \dfrac{1}{x} \right)}^{5}}{{\left( 2x \right)}^{1}}+15{{\left( \dfrac{1}{x} \right)}^{4}}{{\left( 2x \right)}^{2}}+20{{\left( \dfrac{1}{x} \right)}^{3}}{{\left( 2x \right)}^{3}}+15{{\left( \dfrac{1}{x} \right)}^{2}}{{\left( 2x \right)}^{4}}+6{{\left( \dfrac{1}{x} \right)}^{1}}{{\left( 2x \right)}^{5}}+1{{\left( \dfrac{1}{x} \right)}^{0}}{{\left( 2x \right)}^{6}}$
Simplifying, we get
${{\left( \dfrac{1}{x}+2x \right)}^{6}}=\dfrac{1}{{{x}^{6}}}+\dfrac{12}{{{x}^{4}}}+\dfrac{60}{{{x}^{2}}}+160+240{{x}^{2}}+192{{x}^{4}}+64{{x}^{6}}$
Hence the sum of coefficients = 1+12+60+160+240+192+64=729
Note: [1] Alternative solution 1: Construct pascal triangle till n = 6
$\begin{align}
& 1 \\
& 1\text{ 1} \\
& \text{1 2 1} \\
& \text{1 3 3 1} \\
& \text{1 4 6 4 1} \\
& \text{1 5 10 10 5 1} \\
& \text{1 6 15 20 15 6 1} \\
\end{align}$
Hence we have the binomial coefficients as 1, 6, 15, 20, 15, 6 and 1, which is the same as above.
[2] Alternative solution 2: Best Method.
Let the expansion of the given expression be ${{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Hence we have
${{\left( \dfrac{1}{x}+2x \right)}^{6}}={{a}_{0}}{{x}^{6}}+{{a}_{1}}{{x}^{5}}+\ldots +{{a}_{12}}{{x}^{-6}}$
Put x = 1, we get
$\begin{align}
& {{\left( \dfrac{1}{1}+2\left( 1 \right) \right)}^{6}}={{a}_{0}}{{1}^{6}}+{{a}_{1}}{{1}^{5}}+\ldots +{{a}_{12}}{{1}^{-6}} \\
& \Rightarrow \sum\limits_{i=0}^{12}{{{a}_{i}}={{3}^{6}}=729} \\
\end{align}$
Hence the sum of the coefficients = 729.
[3] Some times, the question asks to find the value of the constant term. In that case, if $x=0$ is within the domain of the expression then put x = 0 to get the result, e.g. Find the constant term in the expansion of the expression ${{\left( 2{{x}^{3}}+3{{x}^{2}}+9 \right)}^{9}}$.
Since x = 0 is in the domain put x = 0 we get ${{\left( 2\times 0+3\times 0+9 \right)}^{9}}={{9}^{9}}$
Hence the constant term in the expansion of the expression is ${{9}^{9}}$.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

