Question

# The sum of all real values of x satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is

Given, $(x^{2} - 5x + 5)^{x^{2} + 4x - 60} = 1$

Clearly, this is possible when

I. $x^{2} + 4x - 60 = 0$ and $x^{2} - 5x + 5 \neq 0$

or

II. $x^{2} - 5x + 5 = 1$

III. $x^{2} - 5x + 5 = - 1$ and $x^{2} + 4x - 60$ = Even integer.

Case IÂ  When $x^{2} + 4x - 60 = 0$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  $x^{2} + 10x - 6x - 60 = 0$

â‡’ Â  Â  Â  Â  Â  Â  Â  Â  Â  $x(x + 10) - 6(x + 10) = 0$

â‡’ Â  Â  Â  Â  Â  Â  Â  Â  Â  (x + 10)(x - 6) = 0

â‡’ Â  Â  Â  Â  Â  Â  Â  Â  Â  x = -10 or x = 6

Note that, for these two values of $x, x^{2} - 5x + 5 \neq 0$

Case IIÂ  WhenÂ  $x^{2} - 5x + 5 = 1$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  $x^{2} - 5x + 4 = 0$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  $x^{2} - 4x - x + 4 = 0$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  x(x - 4) -1(x - 4) = 0

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  (x - 4)(x - 1) = 0 â‡’ x = 4 or x = 1

Case IIIÂ  When Â  $x^{2} - 5x + 5 = -1$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  $x^{2} - 5x + 6 = 0$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  $x^{2} - 2x - 3x + 6 = 0$

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  x(x - 2) - 3(x - 2) = 0

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  (x - 2)(x - 3) = 0

â‡’Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  Â  x = 2 or x = 3.

Now, when x = 2, $x^{2} + 4x - 60 = 4 + 8 - 60 = - 48$, which is an even integer.

When x = 3, $x^{2} + 4x - 60 = 9 + 12 - 60 = -39$, which is not an even integer.

Hence the sum of all real values of x = -10 + 6 + 4 + 1 + 2 = 3.