
The number of orbitals with \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\],\[{{\mathbf{m}}_{\mathbf{1}}}\; = {\text{ }} + {\mathbf{2}}\] is ___________. (Round off to the nearest integer).
Answer
233.1k+ views
Hint: The quantum numbers are principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (ml) and spin quantum number (ms). These quantum numbers are used to describe an electron in an orbital. Principle quantum number (n) signifies shell and azimuthal quantum number (l) signifies sub-shell of the orbital. Magnetic quantum number represents the orientation of orbitals in the subshell. Spin quantum number represents the angular momentum of the electron.
Complete Step by Step Solution:
Given principal quantum number, \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\]
Therefore, azimuthal quantum number is given by formula \[{\mathbf{l}} = {\mathbf{n}} - {\mathbf{1}} \ldots \ldots {\mathbf{1}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}},{\mathbf{1}}\]. Also, magnetic quantum number is given \[{\mathbf{m}} = - {\mathbf{l}}{\text{ }}{\mathbf{to}} + {\mathbf{l}}\]
Thus, \[{\mathbf{m}} = - {\mathbf{4}}, - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}},{\mathbf{4}}\]for \[{\mathbf{l}} = {\mathbf{4}}\]
\[{\mathbf{m}} = - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}}\]for \[{\mathbf{l}} = {\mathbf{3}}\]
\[{\mathbf{m}} = - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}}\]for \[{\mathbf{l}} = {\mathbf{2}}\]
\[{\mathbf{m}} = - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}}\]for \[{\mathbf{l}} = {\mathbf{1}}\]
Thus, \[{\mathbf{m}} = + {\mathbf{2}}\] appears in\[{\mathbf{l}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}}\]. So, the number of orbitals having value of m as \[ + {\mathbf{2}}\] is\[{\mathbf{3}}\].
Note: The value of l cannot exceed the value of n and also, the value of m cannot exceed the value of l. Principal and azimuthal quantum numbers cannot have a negative value. Spin quantum numbers have a value \[ + \frac{1}{2}\]and $ - \frac{1}{2}$. There are only two values of spin quantum number because a single orbital can accommodate only two electrons in an orbital. It is not necessary that \[ + \frac{1}{2}\]represents clockwise direction and $ - \frac{1}{2}$represents negative. Positive and negative signs just represent that the spin direction is the reverse of one another.
Complete Step by Step Solution:
Given principal quantum number, \[{\mathbf{n}} = {\text{ }}{\mathbf{5}}\]
Therefore, azimuthal quantum number is given by formula \[{\mathbf{l}} = {\mathbf{n}} - {\mathbf{1}} \ldots \ldots {\mathbf{1}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}},{\mathbf{1}}\]. Also, magnetic quantum number is given \[{\mathbf{m}} = - {\mathbf{l}}{\text{ }}{\mathbf{to}} + {\mathbf{l}}\]
Thus, \[{\mathbf{m}} = - {\mathbf{4}}, - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}},{\mathbf{4}}\]for \[{\mathbf{l}} = {\mathbf{4}}\]
\[{\mathbf{m}} = - {\mathbf{3}}, - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}},{\mathbf{3}}\]for \[{\mathbf{l}} = {\mathbf{3}}\]
\[{\mathbf{m}} = - {\mathbf{2}}, - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}},{\mathbf{2}}\]for \[{\mathbf{l}} = {\mathbf{2}}\]
\[{\mathbf{m}} = - {\mathbf{1}},{\mathbf{0}},{\mathbf{1}}\]for \[{\mathbf{l}} = {\mathbf{1}}\]
Thus, \[{\mathbf{m}} = + {\mathbf{2}}\] appears in\[{\mathbf{l}} = {\text{ }}{\mathbf{4}},{\mathbf{3}},{\mathbf{2}}\]. So, the number of orbitals having value of m as \[ + {\mathbf{2}}\] is\[{\mathbf{3}}\].
Note: The value of l cannot exceed the value of n and also, the value of m cannot exceed the value of l. Principal and azimuthal quantum numbers cannot have a negative value. Spin quantum numbers have a value \[ + \frac{1}{2}\]and $ - \frac{1}{2}$. There are only two values of spin quantum number because a single orbital can accommodate only two electrons in an orbital. It is not necessary that \[ + \frac{1}{2}\]represents clockwise direction and $ - \frac{1}{2}$represents negative. Positive and negative signs just represent that the spin direction is the reverse of one another.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

