
The coordinates of the points A and B are $(a,0)$ and $( - a,0)$ respectively. If a point P moves so that $P{A^2} - P{B^2} = 2{k^2}$ , when k is constant, then find the equation to the locus of the point P.
A. $2ax + {k^2} = 0$
B. $2ax - {k^2} = 0$
C. $ax + 2{k^2} = 0$
D. $ax - 2{k^2} = 0$
Answer
216.3k+ views
Hint: First consider the coordinate of the point P. Then use the distance formula to obtain the distance between the point P and A, and that point P and B. Then substitute the values of PA and PB in the given equation to obtain the required locus.
Formula Used:
The distance formula of two points $(a,b),(c,d)$ is
$\sqrt {{{(c - a)}^2} + {{(d - b)}^2}} $.
Complete step by step solution:
Suppose that the coordinate of the point is $P(x,y)$ .
It is given that $P{A^2} - P{B^2} = 2{k^2}$--(1)
Now, $PA = \sqrt {{{(a - x)}^2} + {{(0 - y)}^2}} $
$P{A^2} = {(a - x)^2} + {y^2}$
And, $PB = \sqrt {{{( - a - x)}^2} + {{(0 - y)}^2}} $
$P{B^2} = {(a + x)^2} + {y^2}$
Now, from the equation (1) we have,
${(a - x)^2} + {y^2} - \left[ {{{(a + x)}^2} + {y^2}} \right] = 2{k^2}$
$\Rightarrow {a^2} - 2ax + {x^2} + {y^2} - \left[ {{a^2} + 2ax + {x^2} + {y^2}} \right] = 2{k^2}$
$\Rightarrow - 4ax = 2{k^2}$
$\Rightarrow 2ax + {k^2} = 0$
Option ‘A’ is correct
Note: Always consider the coordinates of P other than (h, k) to avoid confusion between the constant k and the coordinate k. Here using the distance formula of two points $(a,b),(c,d)$ it becomes easy to equate the given coordinates. If the diameter line is also bisecting the sides and is perpendicular then we have to find all equations of sides and equations of circle and then the coordinates of vertices.
Formula Used:
The distance formula of two points $(a,b),(c,d)$ is
$\sqrt {{{(c - a)}^2} + {{(d - b)}^2}} $.
Complete step by step solution:
Suppose that the coordinate of the point is $P(x,y)$ .
It is given that $P{A^2} - P{B^2} = 2{k^2}$--(1)
Now, $PA = \sqrt {{{(a - x)}^2} + {{(0 - y)}^2}} $
$P{A^2} = {(a - x)^2} + {y^2}$
And, $PB = \sqrt {{{( - a - x)}^2} + {{(0 - y)}^2}} $
$P{B^2} = {(a + x)^2} + {y^2}$
Now, from the equation (1) we have,
${(a - x)^2} + {y^2} - \left[ {{{(a + x)}^2} + {y^2}} \right] = 2{k^2}$
$\Rightarrow {a^2} - 2ax + {x^2} + {y^2} - \left[ {{a^2} + 2ax + {x^2} + {y^2}} \right] = 2{k^2}$
$\Rightarrow - 4ax = 2{k^2}$
$\Rightarrow 2ax + {k^2} = 0$
Option ‘A’ is correct
Note: Always consider the coordinates of P other than (h, k) to avoid confusion between the constant k and the coordinate k. Here using the distance formula of two points $(a,b),(c,d)$ it becomes easy to equate the given coordinates. If the diameter line is also bisecting the sides and is perpendicular then we have to find all equations of sides and equations of circle and then the coordinates of vertices.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

