Answer
Verified
448.2k+ views
Hint: We can assume 2 variables for length and breadth. We can write the area and perimeter in terms of the variables of length and breadth. By the given conditions we can form 2 equations and we can get the length and breadth by solving these equations.
Complete step by step answer:
Let l be the length of the rectangle and b be the breadth of the rectangle.
Then area of the rectangle is given by, ${\text{A = $l \times$ b}}$. But the area is given as 150 sq. units. So, we get,
${\text{$l \times b$ = 150}}$ ... (1)
The perimeter of the rectangle is given by, ${\text{P = 2}}\left( {{\text{l + b}}} \right)$. But the perimeter is given as 50 units. So we get,
${\text{50 = 2}}\left( {{\text{l + b}}} \right)$
On dividing throughout with 2, we get
${\text{l + b = }}\dfrac{{{\text{50}}}}{{\text{2}}}{\text{ = 25}}$ … (2)
Equation (1) can be written as,
${\text{l = }}\dfrac{{{\text{150}}}}{{\text{b}}}$.. (3)
On Substituting for l in equation (2), we get,
$\dfrac{{{\text{150}}}}{{\text{b}}}{\text{ + b = 25}}$
On Multiplying throughout with b, we get,
${\text{150 + }}{{\text{b}}^{\text{2}}}{\text{ = 25b}}$
$ \Rightarrow {{\text{b}}^{\text{2}}}{\text{ - 25b + 150 = 0}}$
We can solve the quadratic equation to get the value of b
$
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ - 10b - 15b + 150 = 0}} \\
\Rightarrow {\text{b}}\left( {{\text{b - 10}}} \right){\text{ - 15}}\left( {{\text{b - 10}}} \right){\text{ = 0}} \\
\Rightarrow \left( {{\text{b - 10}}} \right)\left( {{\text{b - 15}}} \right){\text{ = 0}} \\
$
$ \Rightarrow {\text{b = 10,15}}$
We can find the length by substituting the value of b in equation (3)
When b=10 units, ${\text{l = }}\dfrac{{{\text{150}}}}{{{\text{10}}}}{\text{ = 15 units}}$
When b=15 units, ${\text{l = }}\dfrac{{{\text{150}}}}{{{\text{15}}}}{\text{ = 10 units}}$
So, the dimensions of the rectangular fields are 10,15
Therefore, the correct answer is option D.
Note: The two equations in 2 variables can be solved by making it a quadratic equation in any one variable. The quadratic equation can be solved by any method. We get 2 values each for breadth and length. This means that the area the rectangle will be the same even if the length and breadth are interchanged
Complete step by step answer:
Let l be the length of the rectangle and b be the breadth of the rectangle.
Then area of the rectangle is given by, ${\text{A = $l \times$ b}}$. But the area is given as 150 sq. units. So, we get,
${\text{$l \times b$ = 150}}$ ... (1)
The perimeter of the rectangle is given by, ${\text{P = 2}}\left( {{\text{l + b}}} \right)$. But the perimeter is given as 50 units. So we get,
${\text{50 = 2}}\left( {{\text{l + b}}} \right)$
On dividing throughout with 2, we get
${\text{l + b = }}\dfrac{{{\text{50}}}}{{\text{2}}}{\text{ = 25}}$ … (2)
Equation (1) can be written as,
${\text{l = }}\dfrac{{{\text{150}}}}{{\text{b}}}$.. (3)
On Substituting for l in equation (2), we get,
$\dfrac{{{\text{150}}}}{{\text{b}}}{\text{ + b = 25}}$
On Multiplying throughout with b, we get,
${\text{150 + }}{{\text{b}}^{\text{2}}}{\text{ = 25b}}$
$ \Rightarrow {{\text{b}}^{\text{2}}}{\text{ - 25b + 150 = 0}}$
We can solve the quadratic equation to get the value of b
$
\Rightarrow {{\text{b}}^{\text{2}}}{\text{ - 10b - 15b + 150 = 0}} \\
\Rightarrow {\text{b}}\left( {{\text{b - 10}}} \right){\text{ - 15}}\left( {{\text{b - 10}}} \right){\text{ = 0}} \\
\Rightarrow \left( {{\text{b - 10}}} \right)\left( {{\text{b - 15}}} \right){\text{ = 0}} \\
$
$ \Rightarrow {\text{b = 10,15}}$
We can find the length by substituting the value of b in equation (3)
When b=10 units, ${\text{l = }}\dfrac{{{\text{150}}}}{{{\text{10}}}}{\text{ = 15 units}}$
When b=15 units, ${\text{l = }}\dfrac{{{\text{150}}}}{{{\text{15}}}}{\text{ = 10 units}}$
So, the dimensions of the rectangular fields are 10,15
Therefore, the correct answer is option D.
Note: The two equations in 2 variables can be solved by making it a quadratic equation in any one variable. The quadratic equation can be solved by any method. We get 2 values each for breadth and length. This means that the area the rectangle will be the same even if the length and breadth are interchanged
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE