Prove that the locus of the poles of chords which subtend a right angle at a fixed point \[\left( h,k \right)\] is \[a{{x}^{2}}-h{{y}^{2}}+\left( 4{{a}^{2}}+2ah \right)x-2aky+a\left( {{h}^{2}}+{{k}^{2}} \right)=0\]
Last updated date: 24th Mar 2023
•
Total views: 308.1k
•
Views today: 6.86k
Answer
308.1k+ views
Hint: Length of projection of \[\overrightarrow{a}\] on \[\overrightarrow{b}\]is given as \[\left| \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{b} \right|} \right|\].
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We know , the equation of axis of this parabola is \[y=0\]
Let us assume two points \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[Q\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola.
Now, we will find the equation of chord \[PQ\] in vector form.
We know , the equation of line joining the points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\], in vector form , is given as
\[\overrightarrow{L}=({{x}_{2}}-{{x}_{1}})\widehat{i}+({{y}_{2}}-{{y}_{1}})\widehat{j}\].
So , the equation of the line joining \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[Q\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[\overrightarrow{PQ}=\left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j}\]
Now, we need to find the locus of the midpoint of \[PQ\].
So , let the midpoint of \[PQ\] be \[M\left( h,k \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So , \[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( i \right)\] and \[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( ii \right)\]
From \[\left( i \right)\] we get \[\left( at_{1}^{2}+at_{2}^{2} \right)=2h\]
From \[\left( ii \right)\] we get \[\left( a{{t}_{1}}+a{{t}_{2}} \right)=k\]
Now , we will find the projection of \[\overrightarrow{PQ}\] on line \[l\].
Let this projection be \[\overrightarrow{AB}\].
Now , in the question, it is given that the length of projection of chord on the line is a constant \[C\].
We know , the length of projection of \[\overrightarrow{a}\] on \[\overrightarrow{b}\]is given as
\[\left| \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|} \right|\]
So , the length of projection of \[\overrightarrow{PQ}\] on \[\overrightarrow{AB}\] is given as
\[\left| \dfrac{\overrightarrow{PQ}.\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} \right|=C.....\left( iii \right)\]
Now, we know the length of \[\overrightarrow{AB}=C\] and line \[AB\]is inclined at angle \[\alpha \]to the axis.
We know , the equation of line of length \[r\] and inclined at an angle \[\theta \] with the \[x\]-axis is given as
\[\overrightarrow{L}=r\cos \theta \widehat{i}+r\sin \theta \widehat{j}\]
So , equation of \[\overrightarrow{AB}\]in vector form is
\[\overrightarrow{AB}=C\cos \alpha \hat{i}+C\sin \alpha \hat{j}\]
Substituting the equation of \[\overrightarrow{AB}\] in equation \[\left( iii \right)\], we get
\[\left| \dfrac{\left( \left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j} \right).\left( C\cos \alpha \hat{i}+C\sin \alpha \hat{j} \right)}{C} \right|=C\]
\[\Rightarrow \left| \dfrac{C\left( at_{2}^{2}-at_{1}^{2} \right)\cos \alpha +C\sin \alpha \left( 2a{{t}_{2}}-2a{{t}_{2}} \right)}{C} \right|=C\]
\[\Rightarrow \left| a\left[ \left( t_{2}^{2}-t_{1}^{2} \right)\cos \alpha +2\sin \alpha \left( {{t}_{2}}-{{t}_{1}} \right) \right] \right|=C\]
Now , we will square both sides to remove the modulus sign.
On squaring both sides, we get
\[{{a}^{2}}{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}{{\left[ \left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha +2\sin \alpha \right]}^{2}}={{C}^{2}}\]
\[\Rightarrow {{a}^{2}}\left( t_{2}^{2}+t_{2}^{2}-2{{t}_{1}}{{t}_{2}} \right)\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha \sin \alpha \right]={{C}^{2}}.....(iv)\]
Now , we know \[a\left( t_{1}^{2}+t_{2}^{2} \right)=2h\] [from \[(i)\]]
\[\Rightarrow t_{1}^{2}+t_{2}^{2}=\dfrac{2h}{a}\]
And \[a\left( {{t}_{1}}+{{t}_{2}} \right)=k\][from \[(ii)\]]
\[\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
\[\Rightarrow t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}\]
\[\Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
Substituting in \[\left( iv \right)\], we get
\[{{a}^{2}}\left( \dfrac{2h}{a}-\dfrac{{{k}^{2}}}{{{a}^{2}}}+\dfrac{2h}{a} \right)\left[ {{\left( \dfrac{k}{a} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\dfrac{k}{a}\cos \alpha \sin \alpha \right]={{C}^{2}}\]
\[\Rightarrow \left( 4ah-{{k}^{2}} \right)\left[ {{k}^{2}}{{\cos }^{2}}\alpha +4{{a}^{2}}{{\sin }^{2}}\alpha +4ak\cos \alpha \sin \alpha \right]={{a}^{2}}{{C}^{2}}\]
\[\Rightarrow \left( 4ah-{{k}^{2}} \right){{\left[ k\cos \alpha +2a\sin \alpha \right]}^{2}}={{a}^{2}}{{C}^{2}}.........\] equation\[(v)\]
Now , to get the equation of the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\]in place of \[\left( h,k \right)\] in equation \[(v)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[\left( 4ax-{{y}^{2}} \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}={{a}^{2}}{{C}^{2}}\]
Or \[\left( {{y}^{2}}-4ax \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}+{{a}^{2}}{{C}^{2}}=0\]
Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We know , the equation of axis of this parabola is \[y=0\]

Let us assume two points \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[Q\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola.
Now, we will find the equation of chord \[PQ\] in vector form.
We know , the equation of line joining the points \[({{x}_{1}},{{y}_{1}})\] and \[({{x}_{2}},{{y}_{2}})\], in vector form , is given as
\[\overrightarrow{L}=({{x}_{2}}-{{x}_{1}})\widehat{i}+({{y}_{2}}-{{y}_{1}})\widehat{j}\].
So , the equation of the line joining \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[Q\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[\overrightarrow{PQ}=\left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j}\]
Now, we need to find the locus of the midpoint of \[PQ\].
So , let the midpoint of \[PQ\] be \[M\left( h,k \right)\].
Now, we know that the coordinates of the midpoint of the line joining two points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is given as: \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\]
So , \[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( i \right)\] and \[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( ii \right)\]
From \[\left( i \right)\] we get \[\left( at_{1}^{2}+at_{2}^{2} \right)=2h\]
From \[\left( ii \right)\] we get \[\left( a{{t}_{1}}+a{{t}_{2}} \right)=k\]
Now , we will find the projection of \[\overrightarrow{PQ}\] on line \[l\].
Let this projection be \[\overrightarrow{AB}\].
Now , in the question, it is given that the length of projection of chord on the line is a constant \[C\].
We know , the length of projection of \[\overrightarrow{a}\] on \[\overrightarrow{b}\]is given as
\[\left| \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a} \right|} \right|\]
So , the length of projection of \[\overrightarrow{PQ}\] on \[\overrightarrow{AB}\] is given as
\[\left| \dfrac{\overrightarrow{PQ}.\overrightarrow{AB}}{\left| \overrightarrow{AB} \right|} \right|=C.....\left( iii \right)\]
Now, we know the length of \[\overrightarrow{AB}=C\] and line \[AB\]is inclined at angle \[\alpha \]to the axis.
We know , the equation of line of length \[r\] and inclined at an angle \[\theta \] with the \[x\]-axis is given as
\[\overrightarrow{L}=r\cos \theta \widehat{i}+r\sin \theta \widehat{j}\]
So , equation of \[\overrightarrow{AB}\]in vector form is
\[\overrightarrow{AB}=C\cos \alpha \hat{i}+C\sin \alpha \hat{j}\]
Substituting the equation of \[\overrightarrow{AB}\] in equation \[\left( iii \right)\], we get
\[\left| \dfrac{\left( \left( at_{2}^{2}-at_{1}^{2} \right)\hat{i}+\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)\hat{j} \right).\left( C\cos \alpha \hat{i}+C\sin \alpha \hat{j} \right)}{C} \right|=C\]
\[\Rightarrow \left| \dfrac{C\left( at_{2}^{2}-at_{1}^{2} \right)\cos \alpha +C\sin \alpha \left( 2a{{t}_{2}}-2a{{t}_{2}} \right)}{C} \right|=C\]
\[\Rightarrow \left| a\left[ \left( t_{2}^{2}-t_{1}^{2} \right)\cos \alpha +2\sin \alpha \left( {{t}_{2}}-{{t}_{1}} \right) \right] \right|=C\]
Now , we will square both sides to remove the modulus sign.
On squaring both sides, we get
\[{{a}^{2}}{{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}{{\left[ \left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha +2\sin \alpha \right]}^{2}}={{C}^{2}}\]
\[\Rightarrow {{a}^{2}}\left( t_{2}^{2}+t_{2}^{2}-2{{t}_{1}}{{t}_{2}} \right)\left[ {{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\left( {{t}_{1}}+{{t}_{2}} \right)\cos \alpha \sin \alpha \right]={{C}^{2}}.....(iv)\]
Now , we know \[a\left( t_{1}^{2}+t_{2}^{2} \right)=2h\] [from \[(i)\]]
\[\Rightarrow t_{1}^{2}+t_{2}^{2}=\dfrac{2h}{a}\]
And \[a\left( {{t}_{1}}+{{t}_{2}} \right)=k\][from \[(ii)\]]
\[\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
\[\Rightarrow t_{1}^{2}+t_{2}^{2}+2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}\]
\[\Rightarrow 2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
Substituting in \[\left( iv \right)\], we get
\[{{a}^{2}}\left( \dfrac{2h}{a}-\dfrac{{{k}^{2}}}{{{a}^{2}}}+\dfrac{2h}{a} \right)\left[ {{\left( \dfrac{k}{a} \right)}^{2}}{{\cos }^{2}}\alpha +4{{\sin }^{2}}\alpha +4\dfrac{k}{a}\cos \alpha \sin \alpha \right]={{C}^{2}}\]
\[\Rightarrow \left( 4ah-{{k}^{2}} \right)\left[ {{k}^{2}}{{\cos }^{2}}\alpha +4{{a}^{2}}{{\sin }^{2}}\alpha +4ak\cos \alpha \sin \alpha \right]={{a}^{2}}{{C}^{2}}\]
\[\Rightarrow \left( 4ah-{{k}^{2}} \right){{\left[ k\cos \alpha +2a\sin \alpha \right]}^{2}}={{a}^{2}}{{C}^{2}}.........\] equation\[(v)\]
Now , to get the equation of the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\]in place of \[\left( h,k \right)\] in equation \[(v)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[\left( 4ax-{{y}^{2}} \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}={{a}^{2}}{{C}^{2}}\]
Or \[\left( {{y}^{2}}-4ax \right){{\left( y\cos \alpha +2a\sin \alpha \right)}^{2}}+{{a}^{2}}{{C}^{2}}=0\]
Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
