What is the momentum of the block before collision if the block having mass M is moving on the frictionless horizontal surface collides with a spring of constant K and compresses by L?
(A) $L\sqrt {MK} $
(B) $\dfrac{{K{L^2}}}{{2M}}$
(C) Zero
(D) $\dfrac{{M{L^2}}}{K}$

Answer
342.9k+ views
Hint Use the formula,
$K.E + P.E = E$
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the energy
Then, make use of the conservation of energy by making kinetic energy and potential energy equal to each other.
Step by Step Solution
We know that, if conservative forces acts on system only the mechanical energy remains constant
$\therefore K.E + P.E = E$(constant)
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the mechanical energy which is constant
$
\Delta K + \Delta U = 0 \\
\\
$
Therefore, $\Delta K = - \Delta U$
Let the initial velocity be $v$
then, kinetic energy is $\dfrac{1}{2}m{v^2}$
And final potential energy due to spring is $\dfrac{1}{2}k{x^2}$ (where, $x$is the compression)
According to conservation of energy, the energy inside a closed system remains constant
So, the kinetic energy becomes equal to the final potential energy
Therefore, $\dfrac{1}{2}M{v^2} = \dfrac{1}{2}K{x^2}$
$
M{v^2} = K{x^2} \\
{v^2} = \dfrac{{K{x^2}}}{M} \\
v = x\sqrt {\dfrac{K}{M}} \\
$
Here, $x$is the compression. So, according to question $L = $compression
$\therefore v = L\sqrt {\dfrac{K}{M}} \cdots (1)$
Hence, maximum momentum, $P = Mv$
Using the value of $v$ from equation $(1)$ in the formula of momentum
$P = L\sqrt {MK} $
From above, we can say that option (A) is correct.
Note The mechanical energy remains constant when conservative forces act only on the system.
In the conservation of energy, we can say that the two energies become equal to each other because energy inside the closed system remains constant therefore, both become equal.
Momentum is the product of mass and velocity and is denoted by $P$ so, we can express momentum as:
$P = Mv$
$K.E + P.E = E$
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the energy
Then, make use of the conservation of energy by making kinetic energy and potential energy equal to each other.
Step by Step Solution
We know that, if conservative forces acts on system only the mechanical energy remains constant
$\therefore K.E + P.E = E$(constant)
where, $K.E$ is the kinetic energy
$P.E$ is the potential energy
$E$ is the mechanical energy which is constant
$
\Delta K + \Delta U = 0 \\
\\
$
Therefore, $\Delta K = - \Delta U$
Let the initial velocity be $v$
then, kinetic energy is $\dfrac{1}{2}m{v^2}$
And final potential energy due to spring is $\dfrac{1}{2}k{x^2}$ (where, $x$is the compression)
According to conservation of energy, the energy inside a closed system remains constant
So, the kinetic energy becomes equal to the final potential energy
Therefore, $\dfrac{1}{2}M{v^2} = \dfrac{1}{2}K{x^2}$
$
M{v^2} = K{x^2} \\
{v^2} = \dfrac{{K{x^2}}}{M} \\
v = x\sqrt {\dfrac{K}{M}} \\
$
Here, $x$is the compression. So, according to question $L = $compression
$\therefore v = L\sqrt {\dfrac{K}{M}} \cdots (1)$
Hence, maximum momentum, $P = Mv$
Using the value of $v$ from equation $(1)$ in the formula of momentum
$P = L\sqrt {MK} $
From above, we can say that option (A) is correct.
Note The mechanical energy remains constant when conservative forces act only on the system.
In the conservation of energy, we can say that the two energies become equal to each other because energy inside the closed system remains constant therefore, both become equal.
Momentum is the product of mass and velocity and is denoted by $P$ so, we can express momentum as:
$P = Mv$
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
State Gay Lusaaccs law of gaseous volume class 11 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the weight in lbs of a 75 Kg person class 11 physics CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

State the laws of reflection of light

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain zero factorial class 11 maths CBSE

What happens as water freezes class 11 chemistry CBSE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
