
Is zero a rational number? Can you write it in the form of $\dfrac{p}{q}$, where p and q are integers and $q \ne 0$?
Answer
598.2k+ views
Hint: Try writing various fractions such that 0 is in the numerator and it is divided by some integer q such that $q \ne 0$. If all such numbers exist then zero is a rational number.
Complete step-by-step answer:
As we know a rational number is a number which is represented in the form of $\dfrac{a}{b}$ , where $b \ne 0$ and a and b has not any common factors except 1.
Then it can be represented as a fraction of two integers.
For example $\dfrac{{10}}{{15}}$
As we see this a fraction but not written in lowest form of fraction so first convert this fraction into lowest form of fraction.
$ \Rightarrow \dfrac{{10}}{{15}} = \dfrac{{2 \times 5}}{{3 \times 5}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{10}}{{15}} = \dfrac{2}{3}$
So this fraction converts into a rational number where ($3 \ne 0$) and has no common factors except 1.
Now consider the given number zero (0).
As we know 0 is an integer.
So when we divide 0 by any integer except itself the value is 0.
So 0 is written as $\dfrac{0}{q} = \dfrac{p}{q}$ where p and q both are integers and (P = 0, $q \ne 0$) and it is written in lowest form of fraction (i.e. it has no common factors except 1).
Therefore 0 is a rational number.
Note: In the definition of rational numbers such that $\dfrac{p}{q},q \ne 0$. It is defined that q should not be equal to zero because if it is not so that we can have a fraction of the form finite divided by 0, which will be nothing but not-denied. Hence this condition is imposed to take into consideration only defined fractions.
Complete step-by-step answer:
As we know a rational number is a number which is represented in the form of $\dfrac{a}{b}$ , where $b \ne 0$ and a and b has not any common factors except 1.
Then it can be represented as a fraction of two integers.
For example $\dfrac{{10}}{{15}}$
As we see this a fraction but not written in lowest form of fraction so first convert this fraction into lowest form of fraction.
$ \Rightarrow \dfrac{{10}}{{15}} = \dfrac{{2 \times 5}}{{3 \times 5}}$
Now cancel out the common terms we have,
$ \Rightarrow \dfrac{{10}}{{15}} = \dfrac{2}{3}$
So this fraction converts into a rational number where ($3 \ne 0$) and has no common factors except 1.
Now consider the given number zero (0).
As we know 0 is an integer.
So when we divide 0 by any integer except itself the value is 0.
So 0 is written as $\dfrac{0}{q} = \dfrac{p}{q}$ where p and q both are integers and (P = 0, $q \ne 0$) and it is written in lowest form of fraction (i.e. it has no common factors except 1).
Therefore 0 is a rational number.
Note: In the definition of rational numbers such that $\dfrac{p}{q},q \ne 0$. It is defined that q should not be equal to zero because if it is not so that we can have a fraction of the form finite divided by 0, which will be nothing but not-denied. Hence this condition is imposed to take into consideration only defined fractions.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Who wrote the novel "Crime and Punishment"?

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

The southernmost point of the Indian mainland is known class 7 social studies CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


