
In a dark room with ambient temperature To, a black body is kept at a temperature T. Keeping the temperature of the black body constant (at T), sun rays are allowed to fall on the black body through a hole in the roof of the dark room. Assuming that there is no change in the ambient temperature of the room, which of the following statement(s) is/are correct?
(THIS QUESTION HAS MULTIPLE CORRECT OPTIONS)
A) The quantity of radiation absorbed by the black body in unit time will increase
B) Since emissivity = absorptivity, hence the quantity of radiation emitted by black body in unit time will increase
C) Black body radiates more energy in unit time in the visible spectrum.
D) The reflected energy in unit time by the black body remains the same.
Answer
218.1k+ views
Hint:The atmospheric temperature is the average air temperature surrounding a person whether it is inside or outside. In relation to weather, the atmospheric temperature is the same as the current air temperature at any one location.
Complete step by solution:
The bodies which radiate energy in the form of photons can be determined using Kirchhoff’s law of radiation. When these photons reach another surface, they may either be absorbed, reflected or transmitted.
Since the radiation is continuously falling on the black body, the quantity radiation absorbed per second will increase.
The reason given in question is self-explanatory. With an increase in temperature, the entire Plank's curve shifts upwards and hence radiation in any spectrum will increase. Reflected energy per unit time will be zero since black body has zero reflectivity and hence it will remain constant.
Therefore, the quantity of radiation absorbed by the black body in unit time will increase, since emissivity = absorptivity, hence the quantity of radiation emitted by black body in unit time will increase, Black body radiates more energy in unit time in the visible spectrum, the reflected energy in unit time by the black body remains same.
Hence, the option (A), (B), (C) and (D) are the correct answer.
Note:The primary law which governs the radiation is the Planck Radiation Law, which gives that the intensity of radiation emitted by a black coloured body as a function of wavelength for a fixed temperature. The Planck law gives a distribution, which peaks at some wavelength.
Complete step by solution:
The bodies which radiate energy in the form of photons can be determined using Kirchhoff’s law of radiation. When these photons reach another surface, they may either be absorbed, reflected or transmitted.
Since the radiation is continuously falling on the black body, the quantity radiation absorbed per second will increase.
The reason given in question is self-explanatory. With an increase in temperature, the entire Plank's curve shifts upwards and hence radiation in any spectrum will increase. Reflected energy per unit time will be zero since black body has zero reflectivity and hence it will remain constant.
Therefore, the quantity of radiation absorbed by the black body in unit time will increase, since emissivity = absorptivity, hence the quantity of radiation emitted by black body in unit time will increase, Black body radiates more energy in unit time in the visible spectrum, the reflected energy in unit time by the black body remains same.
Hence, the option (A), (B), (C) and (D) are the correct answer.
Note:The primary law which governs the radiation is the Planck Radiation Law, which gives that the intensity of radiation emitted by a black coloured body as a function of wavelength for a fixed temperature. The Planck law gives a distribution, which peaks at some wavelength.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

