
If $x < - 1$ and $x,{\text{ }}\left| {x + 1} \right|,{\text{ }}\left| {x - 1} \right|$are in A.P. Then the sum of the first twenty terms of the A.P.
$
a.{\text{ 150}} \\
b.{\text{ 280}} \\
c.{\text{ 350}} \\
d.{\text{ 180}} \\
$
Answer
217.8k+ views
Hint – If a number is less than zero than the modulus of that number is negative, the sum of n terms of an A.P is given as ${S_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$ use this property to reach the answer.
It is given that $x < - 1$
$ \Rightarrow x + 1 < 0$
As we know If a number is less than zero than the modulus of that number is negative.
$ \Rightarrow \left| {x + 1} \right| = - \left( {x + 1} \right) = - x - 1$………… (2)
Again $x < - 1$
Subtract 1 on both sides in the above equation.
$
\Rightarrow x - 1 < - 1 - 1 \\
\Rightarrow x - 1 < - 2 \\
$
So, (x - 1) is also less than zero.
$ \Rightarrow \left| {x - 1} \right| = - \left( {x - 1} \right) = - x + 1$………….. (3)
Now it is given that $x,{\text{ }}\left| {x + 1} \right|,{\text{ }}\left| {x - 1} \right|$these are in A.P.
So from equation (2) and (3)
$ \Rightarrow x,{\text{ }}\left( { - x - 1} \right),{\text{ }}\left( { - x + 1} \right)$ Forms an A.P.
So according to A.P property which is twice of second term is equal to sum of first and third term
$
\Rightarrow 2\left( { - x - 1} \right) = x + \left( { - x + 1} \right) \\
\Rightarrow - 2x - 2 = x - x + 1 \\
\Rightarrow - 2x = 3 \\
\Rightarrow x = \dfrac{{ - 3}}{2} \\
$
So the series becomes
\[
x,{\text{ }}\left| {x + 1} \right|,{\text{ }}\left| {x - 1} \right| \\
\dfrac{{ - 3}}{2},\left| {\dfrac{{ - 3}}{2} + 1} \right|,\left| {\dfrac{{ - 3}}{2} - 1} \right|............... \\
\dfrac{{ - 3}}{2},\left| {\dfrac{{ - 1}}{2}} \right|,\left| {\dfrac{{ - 5}}{2}} \right|............... \\
\dfrac{{ - 3}}{2},\dfrac{1}{2},\dfrac{5}{2},................ \\
\]
Because modulus of any negative number is positive.
So the common difference of this A.P is
\[d = \dfrac{1}{2} - \dfrac{{ - 3}}{2} = \dfrac{1}{2} + \dfrac{3}{2} = \dfrac{4}{2} = 2\]
Now we have to find out the sum of 20 terms, so using the formula of sum of an A.P
${S_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is number of terms, d is common difference and ${a_1}$ is the first term.
So, n = 20, d = 2, ${a_1} = \dfrac{{ - 3}}{2}$
$
\Rightarrow {S_{20}} = \dfrac{{20}}{2}\left( {2\left( {\dfrac{{ - 3}}{2}} \right) + \left( {20 - 1} \right)2} \right) \\
\Rightarrow {S_{20}} = 10\left( { - 3 + 38} \right) = 10\left( {35} \right) = 350 \\
$
So this is the required sum of the A.P
Hence, option (c) is correct.
Note – in such types of questions always remember the property of modulus and the basic properties of an A.P which is stated above then using these properties first determine the series, then determine the common difference then using the formula of sum of an A.P calculate the sum of 20 terms which is the required answer.
It is given that $x < - 1$
$ \Rightarrow x + 1 < 0$
As we know If a number is less than zero than the modulus of that number is negative.
$ \Rightarrow \left| {x + 1} \right| = - \left( {x + 1} \right) = - x - 1$………… (2)
Again $x < - 1$
Subtract 1 on both sides in the above equation.
$
\Rightarrow x - 1 < - 1 - 1 \\
\Rightarrow x - 1 < - 2 \\
$
So, (x - 1) is also less than zero.
$ \Rightarrow \left| {x - 1} \right| = - \left( {x - 1} \right) = - x + 1$………….. (3)
Now it is given that $x,{\text{ }}\left| {x + 1} \right|,{\text{ }}\left| {x - 1} \right|$these are in A.P.
So from equation (2) and (3)
$ \Rightarrow x,{\text{ }}\left( { - x - 1} \right),{\text{ }}\left( { - x + 1} \right)$ Forms an A.P.
So according to A.P property which is twice of second term is equal to sum of first and third term
$
\Rightarrow 2\left( { - x - 1} \right) = x + \left( { - x + 1} \right) \\
\Rightarrow - 2x - 2 = x - x + 1 \\
\Rightarrow - 2x = 3 \\
\Rightarrow x = \dfrac{{ - 3}}{2} \\
$
So the series becomes
\[
x,{\text{ }}\left| {x + 1} \right|,{\text{ }}\left| {x - 1} \right| \\
\dfrac{{ - 3}}{2},\left| {\dfrac{{ - 3}}{2} + 1} \right|,\left| {\dfrac{{ - 3}}{2} - 1} \right|............... \\
\dfrac{{ - 3}}{2},\left| {\dfrac{{ - 1}}{2}} \right|,\left| {\dfrac{{ - 5}}{2}} \right|............... \\
\dfrac{{ - 3}}{2},\dfrac{1}{2},\dfrac{5}{2},................ \\
\]
Because modulus of any negative number is positive.
So the common difference of this A.P is
\[d = \dfrac{1}{2} - \dfrac{{ - 3}}{2} = \dfrac{1}{2} + \dfrac{3}{2} = \dfrac{4}{2} = 2\]
Now we have to find out the sum of 20 terms, so using the formula of sum of an A.P
${S_n} = \dfrac{n}{2}\left( {2{a_1} + \left( {n - 1} \right)d} \right)$, where n is number of terms, d is common difference and ${a_1}$ is the first term.
So, n = 20, d = 2, ${a_1} = \dfrac{{ - 3}}{2}$
$
\Rightarrow {S_{20}} = \dfrac{{20}}{2}\left( {2\left( {\dfrac{{ - 3}}{2}} \right) + \left( {20 - 1} \right)2} \right) \\
\Rightarrow {S_{20}} = 10\left( { - 3 + 38} \right) = 10\left( {35} \right) = 350 \\
$
So this is the required sum of the A.P
Hence, option (c) is correct.
Note – in such types of questions always remember the property of modulus and the basic properties of an A.P which is stated above then using these properties first determine the series, then determine the common difference then using the formula of sum of an A.P calculate the sum of 20 terms which is the required answer.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Elastic Collisions in Two Dimensions

Understanding Newton’s Laws of Motion

JEE Main 2026 Syllabus Updated for Physics, Chemistry and Mathematics

Other Pages
NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

