If \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a G.P., then \[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}^r} \right){\left( {\frac{a}{c}} \right)^q}\] is equal to
A. 1
B. \[{a^P}{b^q}{c^r}\]
C. \[{a^q}{b^r}{c^p}\]
D. \[{a^r}{b^p}{c^q}\]
Answer
54.6k+ views
Hint:
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Formula used:
GP where ‘a’ is the first word and r is the common ratio
\[{n^{th}}term = a{r^{n - 1}}\].
Complete step-by-step solution
General term of Geometric progression is
\[A{R^{n - 1}}\]
Given that, \[a,b,c\]are \[{p^{th}},{q^{th}}\]and\[{r^{th}}\] terms of a Geometric progression, then
\[{\rm{a}} = {\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}\]-- (1)
\[{\rm{b}} = {\rm{A}}{{\rm{R}}^{{\rm{q}} - 1}}\]-- (2)
\[{\rm{c}} = {\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}\]-- (3)
Therefore, according to the given question it becomes,
\[{\left( {\frac{{\rm{c}}}{{\rm{b}}}} \right)^{\rm{p}}}{\left( {\frac{{\rm{b}}}{{\rm{a}}}} \right)^{\rm{r}}}{\left( {\frac{{\rm{a}}}{{\rm{c}}}} \right)^{\rm{q}}}\]-- (4)
Now, we have to substitute the values from the equation (1), equation (2) and equation (3) in equation (4), we get
\[{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{\rm{q}}} - 1}}} \right)^{\rm{p}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{q - 1}}}}{{{\rm{A}}{{\rm{R}}^{p - 1}}}}} \right)^{\rm{r}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}} \right)^{\rm{q}}}\]
Let us cancel the similar terms, so that we can get
\[ \Rightarrow {\left( {{{\rm{R}}^{{\rm{r}} - {\rm{q}}}}} \right)^{\rm{p}}}{\left( {{{\rm{R}}^{{\rm{q}} - {\rm{p}}}}} \right)^{\rm{r}}}{\left( {{{\rm{R}}^{{\rm{p}} - 1}}} \right)^{\rm{q}}}\]
On using the exponent properties to solve the equation, we get
\[ \Rightarrow {{\rm{R}}^{{\rm{pr}} - {\rm{pq}}q{\rm{qr}} - {\rm{pr}} - {\rm{pq}} - {\rm{q}}}}\]
Simplify the powers of the above equation, we get
\[ \Rightarrow {{\rm{R}}^0} = 1{\rm{ }}\]
Therefore, if \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a Geometric progression, then\[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}} \right){\left( {\frac{a}{c}} \right)^q}\]is equal to \[1\].
Hence, the option A is correct.
Note:
Students are likely to make mistakes in these types of problems; exponent qualities must be understood in order to solve geometric progression problems. The laws of indices are another name for exponent characteristics. The power of the base value is the exponent. Power is the expression that represents repeated multiplication of the same number. Exponent is the quantity representing the power to which the number is raised.
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Formula used:
GP where ‘a’ is the first word and r is the common ratio
\[{n^{th}}term = a{r^{n - 1}}\].
Complete step-by-step solution
General term of Geometric progression is
\[A{R^{n - 1}}\]
Given that, \[a,b,c\]are \[{p^{th}},{q^{th}}\]and\[{r^{th}}\] terms of a Geometric progression, then
\[{\rm{a}} = {\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}\]-- (1)
\[{\rm{b}} = {\rm{A}}{{\rm{R}}^{{\rm{q}} - 1}}\]-- (2)
\[{\rm{c}} = {\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}\]-- (3)
Therefore, according to the given question it becomes,
\[{\left( {\frac{{\rm{c}}}{{\rm{b}}}} \right)^{\rm{p}}}{\left( {\frac{{\rm{b}}}{{\rm{a}}}} \right)^{\rm{r}}}{\left( {\frac{{\rm{a}}}{{\rm{c}}}} \right)^{\rm{q}}}\]-- (4)
Now, we have to substitute the values from the equation (1), equation (2) and equation (3) in equation (4), we get
\[{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{\rm{q}}} - 1}}} \right)^{\rm{p}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{q - 1}}}}{{{\rm{A}}{{\rm{R}}^{p - 1}}}}} \right)^{\rm{r}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}} \right)^{\rm{q}}}\]
Let us cancel the similar terms, so that we can get
\[ \Rightarrow {\left( {{{\rm{R}}^{{\rm{r}} - {\rm{q}}}}} \right)^{\rm{p}}}{\left( {{{\rm{R}}^{{\rm{q}} - {\rm{p}}}}} \right)^{\rm{r}}}{\left( {{{\rm{R}}^{{\rm{p}} - 1}}} \right)^{\rm{q}}}\]
On using the exponent properties to solve the equation, we get
\[ \Rightarrow {{\rm{R}}^{{\rm{pr}} - {\rm{pq}}q{\rm{qr}} - {\rm{pr}} - {\rm{pq}} - {\rm{q}}}}\]
Simplify the powers of the above equation, we get
\[ \Rightarrow {{\rm{R}}^0} = 1{\rm{ }}\]
Therefore, if \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a Geometric progression, then\[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}} \right){\left( {\frac{a}{c}} \right)^q}\]is equal to \[1\].
Hence, the option A is correct.
Note:
Students are likely to make mistakes in these types of problems; exponent qualities must be understood in order to solve geometric progression problems. The laws of indices are another name for exponent characteristics. The power of the base value is the exponent. Power is the expression that represents repeated multiplication of the same number. Exponent is the quantity representing the power to which the number is raised.
Last updated date: 03rd Jun 2023
•
Total views: 54.6k
•
Views today: 0.10k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
