
If \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a G.P., then \[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}^r} \right){\left( {\frac{a}{c}} \right)^q}\] is equal to
A. 1
B. \[{a^P}{b^q}{c^r}\]
C. \[{a^q}{b^r}{c^p}\]
D. \[{a^r}{b^p}{c^q}\]
Answer
217.8k+ views
Hint:
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Formula used:
GP where ‘a’ is the first word and r is the common ratio
\[{n^{th}}term = a{r^{n - 1}}\].
Complete step-by-step solution
General term of Geometric progression is
\[A{R^{n - 1}}\]
Given that, \[a,b,c\]are \[{p^{th}},{q^{th}}\]and\[{r^{th}}\] terms of a Geometric progression, then
\[{\rm{a}} = {\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}\]-- (1)
\[{\rm{b}} = {\rm{A}}{{\rm{R}}^{{\rm{q}} - 1}}\]-- (2)
\[{\rm{c}} = {\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}\]-- (3)
Therefore, according to the given question it becomes,
\[{\left( {\frac{{\rm{c}}}{{\rm{b}}}} \right)^{\rm{p}}}{\left( {\frac{{\rm{b}}}{{\rm{a}}}} \right)^{\rm{r}}}{\left( {\frac{{\rm{a}}}{{\rm{c}}}} \right)^{\rm{q}}}\]-- (4)
Now, we have to substitute the values from the equation (1), equation (2) and equation (3) in equation (4), we get
\[{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{\rm{q}}} - 1}}} \right)^{\rm{p}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{q - 1}}}}{{{\rm{A}}{{\rm{R}}^{p - 1}}}}} \right)^{\rm{r}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}} \right)^{\rm{q}}}\]
Let us cancel the similar terms, so that we can get
\[ \Rightarrow {\left( {{{\rm{R}}^{{\rm{r}} - {\rm{q}}}}} \right)^{\rm{p}}}{\left( {{{\rm{R}}^{{\rm{q}} - {\rm{p}}}}} \right)^{\rm{r}}}{\left( {{{\rm{R}}^{{\rm{p}} - 1}}} \right)^{\rm{q}}}\]
On using the exponent properties to solve the equation, we get
\[ \Rightarrow {{\rm{R}}^{{\rm{pr}} - {\rm{pq}}q{\rm{qr}} - {\rm{pr}} - {\rm{pq}} - {\rm{q}}}}\]
Simplify the powers of the above equation, we get
\[ \Rightarrow {{\rm{R}}^0} = 1{\rm{ }}\]
Therefore, if \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a Geometric progression, then\[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}} \right){\left( {\frac{a}{c}} \right)^q}\]is equal to \[1\].
Hence, the option A is correct.
Note:
Students are likely to make mistakes in these types of problems; exponent qualities must be understood in order to solve geometric progression problems. The laws of indices are another name for exponent characteristics. The power of the base value is the exponent. Power is the expression that represents repeated multiplication of the same number. Exponent is the quantity representing the power to which the number is raised.
Geometric Progression is abbreviated as GP. Th series \[a,ar,a{r^2},a{r^3},......\] are said to be in GP where ‘a’ is the first word and r is the common ratio. The n-th term is given as \[{n^{th}}term = a{r^{n - 1}}\]. Geometric progression is a non-zero number series in which each term following the first is determined by multiplying the preceding value by a fixed non-zero number known as the common ratio.
Formula used:
GP where ‘a’ is the first word and r is the common ratio
\[{n^{th}}term = a{r^{n - 1}}\].
Complete step-by-step solution
General term of Geometric progression is
\[A{R^{n - 1}}\]
Given that, \[a,b,c\]are \[{p^{th}},{q^{th}}\]and\[{r^{th}}\] terms of a Geometric progression, then
\[{\rm{a}} = {\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}\]-- (1)
\[{\rm{b}} = {\rm{A}}{{\rm{R}}^{{\rm{q}} - 1}}\]-- (2)
\[{\rm{c}} = {\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}\]-- (3)
Therefore, according to the given question it becomes,
\[{\left( {\frac{{\rm{c}}}{{\rm{b}}}} \right)^{\rm{p}}}{\left( {\frac{{\rm{b}}}{{\rm{a}}}} \right)^{\rm{r}}}{\left( {\frac{{\rm{a}}}{{\rm{c}}}} \right)^{\rm{q}}}\]-- (4)
Now, we have to substitute the values from the equation (1), equation (2) and equation (3) in equation (4), we get
\[{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{\rm{q}}} - 1}}} \right)^{\rm{p}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{q - 1}}}}{{{\rm{A}}{{\rm{R}}^{p - 1}}}}} \right)^{\rm{r}}}{\left( {\frac{{{\rm{A}}{{\rm{R}}^{{\rm{p}} - 1}}}}{{{\rm{A}}{{\rm{R}}^{{\rm{r}} - 1}}}}} \right)^{\rm{q}}}\]
Let us cancel the similar terms, so that we can get
\[ \Rightarrow {\left( {{{\rm{R}}^{{\rm{r}} - {\rm{q}}}}} \right)^{\rm{p}}}{\left( {{{\rm{R}}^{{\rm{q}} - {\rm{p}}}}} \right)^{\rm{r}}}{\left( {{{\rm{R}}^{{\rm{p}} - 1}}} \right)^{\rm{q}}}\]
On using the exponent properties to solve the equation, we get
\[ \Rightarrow {{\rm{R}}^{{\rm{pr}} - {\rm{pq}}q{\rm{qr}} - {\rm{pr}} - {\rm{pq}} - {\rm{q}}}}\]
Simplify the powers of the above equation, we get
\[ \Rightarrow {{\rm{R}}^0} = 1{\rm{ }}\]
Therefore, if \[a,b,c\] are \[{p^{th}},{q^{th}}\] and \[{r^{th}}\] terms of a Geometric progression, then\[{\left( {\frac{c}{b}} \right)^p}\left( {\frac{b}{a}} \right){\left( {\frac{a}{c}} \right)^q}\]is equal to \[1\].
Hence, the option A is correct.
Note:
Students are likely to make mistakes in these types of problems; exponent qualities must be understood in order to solve geometric progression problems. The laws of indices are another name for exponent characteristics. The power of the base value is the exponent. Power is the expression that represents repeated multiplication of the same number. Exponent is the quantity representing the power to which the number is raised.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

