
If $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, find ${A^{ - 1}}$, using ${A^{ - 1}}$ solve the system of equations
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
Answer
217.5k+ views
Hint: In this question first convert the system of equation into matrix format, then apply the formula of A inverse which is ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$, and later on use the concept of matrix multiplication, so use these concepts to get the solution of the question.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

