If $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, find ${A^{ - 1}}$, using ${A^{ - 1}}$ solve the system of equations
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
Last updated date: 19th Mar 2023
•
Total views: 306k
•
Views today: 3.88k
Answer
306k+ views
Hint: In this question first convert the system of equation into matrix format, then apply the formula of A inverse which is ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$, and later on use the concept of matrix multiplication, so use these concepts to get the solution of the question.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
