If a diagonal of a square is doubled, then the area of the square becomes m times. Find m.
Answer
Verified
477.9k+ views
Hint: Use Pythagoras theorem to find the diagonal of the square, then double it to get the new length. Use this length to compute the area of the resultant square.
Complete step by step answer:
Consider a square of side length ‘a’
Using Pythagoras theorem on $\Delta \,\text{QRS}$,
\[\begin{align}
& \text{S}{{\text{R}}^{\text{2}}}\,\text{+}\,\text{Q}{{\text{R}}^{\text{2}}}\,\text{=}\,\text{Q}{{\text{S}}^{\text{2}}} \\
& {{\text{a}}^{\text{2}}}\,\text{+}\,{{\text{a}}^{\text{2}}}\,\text{=}\,\text{Q}{{\text{S}}^{\text{2}}}
\end{align}\]
$\therefore $ length of diagonal $\text{QS}\,\text{=}\,\sqrt{\text{2}}\text{a}$
Now, according to the question, the diagonal of square
\[\begin{align}
& \text{ABCD}\,\text{=}\,\text{2 }\!\!\times\!\!\text{ }\,\text{diagonal}\,\text{of PQRS} \\
& \text{=}\,\text{2}\,\times \,\sqrt{2}a \\
& =\,2\sqrt{2}a.
\end{align}\]
Let us apply the Pythagoras theorem again on $\Delta \,\text{BCD}$
\[\text{C}{{\text{D}}^{\text{2}}}\,\text{+}\,\text{B}{{\text{C}}^{\text{2}}}\,\text{=}\,\text{BD}\]
But $\text{BD}\,\text{=}\,\text{2}\sqrt{2}\text{a}$, as derived before
\[\begin{align}
& \therefore \,\text{C}{{\text{D}}^{\text{2}}}\,\text{+}\,\text{B}{{\text{C}}^{\text{2}}}\,\text{=}\,\text{8}{{\text{a}}^{\text{2}}} \\
& \text{But}\,\text{CD}\,\text{=}\,\text{BC}\,\text{=}\,\text{b}\,\text{(New square side)} \\
& \text{2}{{\text{b}}^{2}}\,=\,8{{\text{a}}^{2}} \\
& \text{b}\,\text{=}\,\text{2a}
\end{align}\]
So the new square has a side that’s double the length of the old square.
Let’s finally compare areas
$\begin{align}
& \text{Area}\,\text{of}\,\text{PQRS}\,\text{=}\,{{\text{a}}^{\text{2}}} \\
& \text{Area}\,\text{of}\,\text{ABCD}\,\text{=}\,{{\text{b}}^{\text{2}}}\,\text{=}\,{{\text{(2a)}}^{\text{2}}}\,\text{=}\,\text{4}{{\text{a}}^{\text{2}}} \\
\end{align}$
\[\therefore \,\dfrac{\text{Area}\,\text{of}\,\text{ABCD}}{\text{Area}\,\text{of}\,\text{PQRS}}\,\text{=}\,\dfrac{\text{4}{{\text{a}}^{\text{2}}}}{{{\text{a}}^{\text{2}}}}\,\text{=}\,\text{4}\]
Hence m = 4
Note: Remember that if a square changes its length by la times, its area changes by a factor of ${{\text{l}}^{2}}$, depending on whether the length is increase or decreases.
$\begin{align}
& \text{If}\,\text{a}\,\to \,\text{la}\,\text{then}\,\text{area}\,\to \,{{\text{l}}^{\text{2}}}\,\text{area} \\
& \text{If}\,\text{a}\,\to \,\dfrac{\text{l}}{\text{l}}\text{a}\,\text{then}\,\text{area}\,\to \,\dfrac{\text{l}}{{{\text{l}}^{\text{2}}}}\,\text{area} \\
\end{align}$
Complete step by step answer:
Consider a square of side length ‘a’
Using Pythagoras theorem on $\Delta \,\text{QRS}$,
\[\begin{align}
& \text{S}{{\text{R}}^{\text{2}}}\,\text{+}\,\text{Q}{{\text{R}}^{\text{2}}}\,\text{=}\,\text{Q}{{\text{S}}^{\text{2}}} \\
& {{\text{a}}^{\text{2}}}\,\text{+}\,{{\text{a}}^{\text{2}}}\,\text{=}\,\text{Q}{{\text{S}}^{\text{2}}}
\end{align}\]
$\therefore $ length of diagonal $\text{QS}\,\text{=}\,\sqrt{\text{2}}\text{a}$
Now, according to the question, the diagonal of square
\[\begin{align}
& \text{ABCD}\,\text{=}\,\text{2 }\!\!\times\!\!\text{ }\,\text{diagonal}\,\text{of PQRS} \\
& \text{=}\,\text{2}\,\times \,\sqrt{2}a \\
& =\,2\sqrt{2}a.
\end{align}\]
Let us apply the Pythagoras theorem again on $\Delta \,\text{BCD}$
\[\text{C}{{\text{D}}^{\text{2}}}\,\text{+}\,\text{B}{{\text{C}}^{\text{2}}}\,\text{=}\,\text{BD}\]
But $\text{BD}\,\text{=}\,\text{2}\sqrt{2}\text{a}$, as derived before
\[\begin{align}
& \therefore \,\text{C}{{\text{D}}^{\text{2}}}\,\text{+}\,\text{B}{{\text{C}}^{\text{2}}}\,\text{=}\,\text{8}{{\text{a}}^{\text{2}}} \\
& \text{But}\,\text{CD}\,\text{=}\,\text{BC}\,\text{=}\,\text{b}\,\text{(New square side)} \\
& \text{2}{{\text{b}}^{2}}\,=\,8{{\text{a}}^{2}} \\
& \text{b}\,\text{=}\,\text{2a}
\end{align}\]
So the new square has a side that’s double the length of the old square.
Let’s finally compare areas
$\begin{align}
& \text{Area}\,\text{of}\,\text{PQRS}\,\text{=}\,{{\text{a}}^{\text{2}}} \\
& \text{Area}\,\text{of}\,\text{ABCD}\,\text{=}\,{{\text{b}}^{\text{2}}}\,\text{=}\,{{\text{(2a)}}^{\text{2}}}\,\text{=}\,\text{4}{{\text{a}}^{\text{2}}} \\
\end{align}$
\[\therefore \,\dfrac{\text{Area}\,\text{of}\,\text{ABCD}}{\text{Area}\,\text{of}\,\text{PQRS}}\,\text{=}\,\dfrac{\text{4}{{\text{a}}^{\text{2}}}}{{{\text{a}}^{\text{2}}}}\,\text{=}\,\text{4}\]
Hence m = 4
Note: Remember that if a square changes its length by la times, its area changes by a factor of ${{\text{l}}^{2}}$, depending on whether the length is increase or decreases.
$\begin{align}
& \text{If}\,\text{a}\,\to \,\text{la}\,\text{then}\,\text{area}\,\to \,{{\text{l}}^{\text{2}}}\,\text{area} \\
& \text{If}\,\text{a}\,\to \,\dfrac{\text{l}}{\text{l}}\text{a}\,\text{then}\,\text{area}\,\to \,\dfrac{\text{l}}{{{\text{l}}^{\text{2}}}}\,\text{area} \\
\end{align}$
Recently Updated Pages
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Will Mr Black be at home Saturday evening Yes hell class 8 english CBSE
An electrician sells a room heater for Rs 3220 gaining class 8 maths CBSE
Trending doubts
How is the Lok Sabha more powerful than the Rajya class 8 social science CBSE
Write a letter to your friend telling himher how you class 8 english CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE
Differentiate between the farms in India and the U class 8 social science CBSE
The strategy of Divide and rule was adopted by A Lord class 8 social science CBSE
When will we use have had and had had in the sente class 8 english CBSE