Courses
Courses for Kids
Free study material
Free LIVE classes
More
LIVE
Join Vedantu’s FREE Mastercalss

# If $0 < r < s \leqslant n$and ${}^n{P_r} = {}^n{P_s}$, then the value of $r + s$ is:$\left( A \right).$ 1$\left( B \right).$ 2$\left( C \right).$ $2n - 1$$\left( D \right).$ $2n - 2$

Verified
366.6k+ views
Hint: Use formulas of permutation to find the value.

We know that:
${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}{\text{ }}\left( {{\text{Permutation Formula}}} \right)$
Given that: ${}^n{P_r} = {}^n{P_s}$
$\therefore \dfrac{{n!}}{{\left( {n - r} \right)!}} = \dfrac{{n!}}{{\left( {n - s} \right)!}} \\ \left( {n - r} \right)! = \left( {n - s} \right)! \\$
Also, $r < s{\text{ }}\left( {{\text{Given}}} \right)$
$\therefore - r > - s$
Adding $n$both sides, we get
$\left( {n - r} \right) > \left( {n - s} \right)$
We know that two different factorials having the same value are 0 and 1, both having factorial equal to 1.
$\therefore n - r = 1$and $n - s = 0$
$\Rightarrow r = n - 1,s = n \\ \therefore r + s = n + n - 1 \\ r + s = 2n - 1 \\$
Hence, the correct option is C.

Note: Whenever you see permutation, always try to expand the term by using a permutation formula which makes calculation easy.

Last updated date: 27th Sep 2023
Total views: 366.6k
Views today: 10.66k