
Find the value of Rydberg’s constant if the energy of the electron in the second orbit in the hydrogen atom is -3.4eV.
Answer
233.4k+ views
Rydberg constant describes the wavelengths or frequencies of light in various series of related spectral lines, mainly those emitted by hydrogen atoms in the Balmer series.
Complete step-by-step answer:
We know,
The wavelength of an electron is represented by $\text{ }\!\!\lambda\!\!\text{ }$
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}$ is the orbit number which is 2 in this case
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}$ is \[\infty \] because the destination orbit number is undefined
\[\dfrac{\text{1}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=R}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Where R is Rydberg constant.
\[\Rightarrow \dfrac{\text{hc}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
\[\Rightarrow \Delta \text{E=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Given,
$\text{E = }-\text{3}\text{.4eV}$
So,
$\Delta \text{E = 0}-(-\text{3}\text{.4eV})$
$=\text{ 3}\text{.4eV = 3}\text{.4}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}$
$=\text{ 5}\text{.44}\times \text{1}{{\text{0}}^{-19}}\text{ J}$
Where,
$\text{h = 6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\text{ }{{\text{m}}^{2}}\text{kg/s}$
$\text{c = 3}\times \text{1}{{\text{0}}^{8}}\text{ m/s}$
So,
$5.44\times {{10}^{-19}}\text{ = }\dfrac{\text{R}\times \text{6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\times 3\times {{10}^{8}}}{4}$
$\Rightarrow \text{R = 1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$
Therefore, the value of Rydberg’s constant is $\text{1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$ if the energy of electron in the second orbit of hydrogen atom is -3.4eV.
Note: We should have knowledge about the Rydberg’s constant.
1) In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectrum of an atom.
2) When used in this form in the mathematical description of a series of spectral lines, the result is the number of waves per unit length, of the week numbers. Multiplication by the speed of light yields the frequencies of the spectral lines.
3) Kinetic and potential energy of atoms results from the motion of electrons. When the electrons are excited they move to a higher energy orbital farther away from the atom. The further the orbital from the nucleus, the higher the potential energy of the electron at the energy level.
Complete step-by-step answer:
We know,
The wavelength of an electron is represented by $\text{ }\!\!\lambda\!\!\text{ }$
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}$ is the orbit number which is 2 in this case
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}$ is \[\infty \] because the destination orbit number is undefined
\[\dfrac{\text{1}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=R}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Where R is Rydberg constant.
\[\Rightarrow \dfrac{\text{hc}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
\[\Rightarrow \Delta \text{E=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Given,
$\text{E = }-\text{3}\text{.4eV}$
So,
$\Delta \text{E = 0}-(-\text{3}\text{.4eV})$
$=\text{ 3}\text{.4eV = 3}\text{.4}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}$
$=\text{ 5}\text{.44}\times \text{1}{{\text{0}}^{-19}}\text{ J}$
Where,
$\text{h = 6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\text{ }{{\text{m}}^{2}}\text{kg/s}$
$\text{c = 3}\times \text{1}{{\text{0}}^{8}}\text{ m/s}$
So,
$5.44\times {{10}^{-19}}\text{ = }\dfrac{\text{R}\times \text{6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\times 3\times {{10}^{8}}}{4}$
$\Rightarrow \text{R = 1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$
Therefore, the value of Rydberg’s constant is $\text{1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$ if the energy of electron in the second orbit of hydrogen atom is -3.4eV.
Note: We should have knowledge about the Rydberg’s constant.
1) In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectrum of an atom.
2) When used in this form in the mathematical description of a series of spectral lines, the result is the number of waves per unit length, of the week numbers. Multiplication by the speed of light yields the frequencies of the spectral lines.
3) Kinetic and potential energy of atoms results from the motion of electrons. When the electrons are excited they move to a higher energy orbital farther away from the atom. The further the orbital from the nucleus, the higher the potential energy of the electron at the energy level.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

