
Find the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
A \[n\]
B \[2n\]
C \[2n\pi \]
D None of these.
Answer
233.1k+ views
Hint: To find value of definite integral first solve the integral. After simplification of integral substitute limits of the integral and perform subtraction.
Formula Used:\[\int {\sin xdx} = - \cos x + c\]
Complete step by step solution:The given definite integral is \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
First simplify the integral as follows,
\[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \]
Further simplify the integral by taking common terms out.
\[\begin{array}{l}\int_0^{2n\pi } {\left( {\left| {\sin x} \right|\left( {1 - \dfrac{1}{2}} \right)} \right)dx} \\ \Rightarrow \int_0^{2n\pi } {\left( {\dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \end{array}\]
Take constant out of integral.
\[ \Rightarrow \dfrac{1}{2}\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]
Find integration with respect to x.
\[\dfrac{1}{2} \times 4n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now the integral becomes as follows.
\[ \Rightarrow 2n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now find integration
\[ \Rightarrow 2n\left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limit in the expression.
\[\begin{array}{l}2n\left( { - \cos \dfrac{\pi }{2} - \left( { - \cos 0} \right)} \right)\\ \Rightarrow 2n\left( {0 + 1} \right)\\ \Rightarrow 2n\end{array}\]
Hence, the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \]is \[2n\].
Option ‘B’ is correct
Note: The common mistake happen by student is taking integration of \[\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]as \[\left[ { - \cos x} \right]_0^{2n\pi }\]which is wrong.
Formula Used:\[\int {\sin xdx} = - \cos x + c\]
Complete step by step solution:The given definite integral is \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
First simplify the integral as follows,
\[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \]
Further simplify the integral by taking common terms out.
\[\begin{array}{l}\int_0^{2n\pi } {\left( {\left| {\sin x} \right|\left( {1 - \dfrac{1}{2}} \right)} \right)dx} \\ \Rightarrow \int_0^{2n\pi } {\left( {\dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \end{array}\]
Take constant out of integral.
\[ \Rightarrow \dfrac{1}{2}\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]
Find integration with respect to x.
\[\dfrac{1}{2} \times 4n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now the integral becomes as follows.
\[ \Rightarrow 2n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now find integration
\[ \Rightarrow 2n\left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limit in the expression.
\[\begin{array}{l}2n\left( { - \cos \dfrac{\pi }{2} - \left( { - \cos 0} \right)} \right)\\ \Rightarrow 2n\left( {0 + 1} \right)\\ \Rightarrow 2n\end{array}\]
Hence, the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \]is \[2n\].
Option ‘B’ is correct
Note: The common mistake happen by student is taking integration of \[\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]as \[\left[ { - \cos x} \right]_0^{2n\pi }\]which is wrong.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

Makar Sankranti Wishes: Happy Makar Sankranti Wishes in Marathi, Hindi, Kannada, and English

