
Find the square of 35.
Answer
513.2k+ views
Hint: Square of a number means product of number twice to itself. For example:
Let the number a, square of a is equal to
\[\mathop {\left( a \right)}\nolimits^2 = a \times a\]
But for a large number, multiplication can be a little tedious.
The number (ab), tens place value = a, ones place value = b, can be written as (10a + b).
Complete step-by-step solution:
Square of 35 $ = \mathop {\left( {35} \right)}\nolimits^2 $
$ = 35 \times 35$
Number 35 can also be representing as
$35 = \left( {30 + 5} \right)$
Squaring both sides
$\mathop {\left( {35} \right)}\nolimits^2 = \mathop {\left( {30 + 5} \right)}\nolimits^2 $
$
\Rightarrow \left( {30 + 5} \right)\left( {30 + 5} \right) \\
\Rightarrow 30\left( {30 + 5} \right) + 5\left( {30 + 5} \right) \\
\Rightarrow 900 + 150 + 150 + 25 \\
\Rightarrow 1225 \\
$
Thus, $\mathop {\left( {35} \right)}\nolimits^2 = 1225$
Therefore, the square of 35 is 1225.
Additional information: Following table of some numbers and their squares:
Note:
There are many alternate methods and short tricks to find the square of a two-digit number. Some of them are stated below:
i) Short trick for square of two-digit number.
Calculate product of tens digit, ones digit and 2.
Write squares of tens and ones together, add the calculated product to it, leaving the last digit of squares. Represents the square of tens and ones digit in two-digits number.
Calculation shown below:
Square of 35:
$
\dfrac{{35}}{
\left. {3 \times 5 \times 2} \right|30 \\
\downarrow {\text{ }} \downarrow \\
}{\text{ }} \\
\dfrac{
092\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{5} \\
+ 30 \\
}{{1225}}{\text{ }} \\
$
Square of 21:
$
\dfrac{{21}}{
\left. {2 \times 1 \times 2} \right|04 \\
\downarrow {\text{ }} \downarrow \\
}{\text{ }} \\
\dfrac{
040\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{1} \\
+ 04 \\
}{{0441}}{\text{ }} \\
$
ii) Consider a number with unit digit 5, i.e., $a5$
\[
\mathop {\left( {a5} \right)}\nolimits^2 = \mathop {\left( {10a + 5} \right)}\nolimits^2 \\
{\text{ = }}10a\left( {10a + 5} \right) + 5\left( {10a + 5} \right) \\
{\text{ }} = 100\mathop a\nolimits^2 + 50a + 50a + 25 \\
{\text{ }} = 100a\left( {a + 1} \right) + 25 \\
{\text{ }} = a\left( {a + 1} \right){\text{hundred}} + 25 \\
\]
Square of 35:
a = 3
\[
\mathop {\left( {35} \right)}\nolimits^2 = 3\left( {3 + 1} \right){\text{hundred}} + 25 \\
{\text{ = }}3\left( 4 \right){\text{hundred}} + 25 \\
{\text{ }} = 1200 + 25 \\
{\text{ }} = 1225 \\
\]
iii) Adding odd numbers: Consider the following:
1 [one odd number] $ = 1 = \mathop 1\nolimits^2 $
1 + 3 [sum of first two odd numbers] $ = 4 = \mathop 2\nolimits^2 $
1 + 3 + 5 [sum of first three odd numbers] $ = 9 = \mathop 3\nolimits^2 $
1 + 3 + 5 + 7 [...] $ = 16 = \mathop 4\nolimits^2 $
1 + 3 + 5 + 7 + 9 [...] $ = 25 = \mathop 5\nolimits^2 $
1 + 3 + 5 + 7 + 9 + 11 [...] $ = 36 = \mathop 6\nolimits^2 $
So we can say that the sum of first $n$ odd natural numbers is $\mathop n\nolimits^2 $
Square of 21:
1 + 3 + 5 + 7 + 9 + 11 + … + 41 $ = 441 = \mathop {21}\nolimits^2 $
Let the number a, square of a is equal to
\[\mathop {\left( a \right)}\nolimits^2 = a \times a\]
But for a large number, multiplication can be a little tedious.
The number (ab), tens place value = a, ones place value = b, can be written as (10a + b).
Complete step-by-step solution:
Square of 35 $ = \mathop {\left( {35} \right)}\nolimits^2 $
$ = 35 \times 35$
Number 35 can also be representing as
$35 = \left( {30 + 5} \right)$
Squaring both sides
$\mathop {\left( {35} \right)}\nolimits^2 = \mathop {\left( {30 + 5} \right)}\nolimits^2 $
$
\Rightarrow \left( {30 + 5} \right)\left( {30 + 5} \right) \\
\Rightarrow 30\left( {30 + 5} \right) + 5\left( {30 + 5} \right) \\
\Rightarrow 900 + 150 + 150 + 25 \\
\Rightarrow 1225 \\
$
Thus, $\mathop {\left( {35} \right)}\nolimits^2 = 1225$
Therefore, the square of 35 is 1225.
Additional information: Following table of some numbers and their squares:
| Number | Square | Number | Square | Number | Square |
| 1 | 1 | 11 | 121 | 21 | 441 |
| 2 | 4 | 12 | 144 | 22 | 484 |
| 3 | 9 | 13 | 169 | 23 | 529 |
| 4 | 16 | 14 | 196 | 24 | 576 |
| 5 | 25 | 15 | 225 | 25 | 625 |
| 6 | 36 | 16 | 256 | 30 | 900 |
| 7 | 49 | 17 | 289 | 35 | 1225 |
| 8 | 64 | 18 | 342 | 40 | 1600 |
| 9 | 81 | 19 | 361 | 45 | 2025 |
| 10 | 100 | 20 | 400 | 50 | 2500 |
Note:
There are many alternate methods and short tricks to find the square of a two-digit number. Some of them are stated below:
i) Short trick for square of two-digit number.
Calculate product of tens digit, ones digit and 2.
Write squares of tens and ones together, add the calculated product to it, leaving the last digit of squares. Represents the square of tens and ones digit in two-digits number.
Calculation shown below:
Square of 35:
$
\dfrac{{35}}{
\left. {3 \times 5 \times 2} \right|30 \\
\downarrow {\text{ }} \downarrow \\
}{\text{ }} \\
\dfrac{
092\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{5} \\
+ 30 \\
}{{1225}}{\text{ }} \\
$
Square of 21:
$
\dfrac{{21}}{
\left. {2 \times 1 \times 2} \right|04 \\
\downarrow {\text{ }} \downarrow \\
}{\text{ }} \\
\dfrac{
040\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{1} \\
+ 04 \\
}{{0441}}{\text{ }} \\
$
ii) Consider a number with unit digit 5, i.e., $a5$
\[
\mathop {\left( {a5} \right)}\nolimits^2 = \mathop {\left( {10a + 5} \right)}\nolimits^2 \\
{\text{ = }}10a\left( {10a + 5} \right) + 5\left( {10a + 5} \right) \\
{\text{ }} = 100\mathop a\nolimits^2 + 50a + 50a + 25 \\
{\text{ }} = 100a\left( {a + 1} \right) + 25 \\
{\text{ }} = a\left( {a + 1} \right){\text{hundred}} + 25 \\
\]
Square of 35:
a = 3
\[
\mathop {\left( {35} \right)}\nolimits^2 = 3\left( {3 + 1} \right){\text{hundred}} + 25 \\
{\text{ = }}3\left( 4 \right){\text{hundred}} + 25 \\
{\text{ }} = 1200 + 25 \\
{\text{ }} = 1225 \\
\]
iii) Adding odd numbers: Consider the following:
1 [one odd number] $ = 1 = \mathop 1\nolimits^2 $
1 + 3 [sum of first two odd numbers] $ = 4 = \mathop 2\nolimits^2 $
1 + 3 + 5 [sum of first three odd numbers] $ = 9 = \mathop 3\nolimits^2 $
1 + 3 + 5 + 7 [...] $ = 16 = \mathop 4\nolimits^2 $
1 + 3 + 5 + 7 + 9 [...] $ = 25 = \mathop 5\nolimits^2 $
1 + 3 + 5 + 7 + 9 + 11 [...] $ = 36 = \mathop 6\nolimits^2 $
So we can say that the sum of first $n$ odd natural numbers is $\mathop n\nolimits^2 $
Square of 21:
1 + 3 + 5 + 7 + 9 + 11 + … + 41 $ = 441 = \mathop {21}\nolimits^2 $
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE

