
Find the maximum value of $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$.
A. 5
B. 11
C. 10
D. -11
Answer
233.1k+ views
Hint: First we will apply the formula sum of cosine formula to simplify the given expression. Then apply the formula to find the maximum and minimum of the given expression.
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Formula Used:
$\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$
Distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$
$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $
Complete step by step solution:
Given expression is
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$
Now we will apply the formula $\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y$ in $\cos \left( {\theta + \dfrac{\pi }{3}} \right)$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\cos \theta \cos \dfrac{\pi }{3} - \sin \theta \sin \dfrac{\pi }{3}} \right] + 3$
Now putting the values $\cos \dfrac{\pi }{3} = \dfrac{1}{2}$ and $\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + 3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right] + 3$
Now we will apply distributive property $a\left( {b + c} \right) = a \cdot b + a \cdot c$ in $3\left[ {\dfrac{1}{2}\cos \theta - \dfrac{{\sqrt 3 }}{2}\sin \theta } \right]$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = 5\cos \theta + \dfrac{3}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Add the like terms
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \left( {5 + \dfrac{3}{2}} \right)\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3 = \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
Now compare the expression $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ with $a\cos \theta + b\sin \theta + c$
Here $a = \dfrac{{13}}{2}$
$b = - \dfrac{{3\sqrt 3 }}{2}$
$c = 3$
We will apply $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $ in $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$
$ - \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {{{\left( {\dfrac{{13}}{2}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{2}} \right)}^2}} $
$ \Rightarrow - \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{169}}{4} + \dfrac{{27}}{4}} $
$ \Rightarrow - \sqrt {\dfrac{{196}}{4}} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {\dfrac{{196}}{4}} $
$ \Rightarrow - \sqrt {49} \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le \sqrt {49} $
$ \Rightarrow - 7 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta \le 7$
Add 3 on both sides of inequality
$ - 7 + 3 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 7 + 3$
$ \Rightarrow - 4 \le \dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3 \le 10$
The maximum value of $\dfrac{{13}}{2}\cos \theta - \dfrac{{3\sqrt 3 }}{2}\sin \theta + 3$ is 10.
Option ‘C’ is correct
Note: Students frequently use the incorrect formula. Instead of using the formula $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $, they use $ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} $. To calculate the maximum value of the $5\cos \theta + 3\cos \left( {\theta + \dfrac{\pi }{3}} \right) + 3$ use the formula $ - \sqrt {{a^2} + {b^2}} + c \le a\cos \theta + b\sin \theta + c \le \sqrt {{a^2} + {b^2}} + c$
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

Makar Sankranti Wishes: Happy Makar Sankranti Wishes in Marathi, Hindi, Kannada, and English

