
Find the limit of given series: $\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=$
a)$\dfrac{1}{100}$
b)$3$
c)$\dfrac{1}{3}$
d)$1$
Answer
216k+ views
The sum of first n natural numbers to power one can be written as,
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
${{1}^{1}}+{{2}^{1}}+\ldots +{{n}^{1}}=\frac{n\left( n+1 \right)}{2}=\frac{{{n}^{2}}}{2}+\frac{n}{2}$
Similarly, the sum of first n natural numbers to power two can be written as,
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{\left( {{n}^{2}}+n \right)\left( 2n+1 \right)}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{2{{n}^{3}}+{{n}^{2}}+2{{n}^{2}}+n}{6}$
${{1}^{2}}+{{2}^{2}}+\ldots +{{n}^{2}}=\frac{{{n}^{3}}}{3}+\frac{{{n}^{2}}}{2}+\frac{n}{6}$
The sum of first n natural numbers to power three can be written as,
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}={{\left( \frac{n\left( n+1 \right)}{2} \right)}^{2}}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{2}}\left( {{n}^{2}}+2n+1 \right)}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}+2{{n}^{3}}+{{n}^{2}}}{4}$
${{1}^{3}}+{{2}^{3}}+\ldots +{{n}^{3}}=\frac{{{n}^{4}}}{4}+\frac{{{n}^{3}}}{2}+\frac{{{n}^{2}}}{4}$
Generalizing this, we get
${{1}^{x}}+{{2}^{x}}+\ldots +{{n}^{x}}=\frac{{{n}^{x+1}}}{x+1}+{{k}_{1}}{{n}^{x}}+{{k}_{2}}{{n}^{x-1}}+\ldots $
Now substituting (x=100), we get
${{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}=\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots $
Now the given expression becomes,
$\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{99+1}}}{99+1}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{99-1}}+\ldots }{{{n}^{100}}}$
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{\frac{{{n}^{100}}}{100}+{{k}_{1}}{{n}^{99}}+{{k}_{2}}{{n}^{98}}+\ldots }{{{n}^{100}}}\]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{{{n}^{100}}}{100{{n}^{100}}}+\frac{{{k}_{1}}{{n}^{99}}}{{{n}^{100}}}+\frac{{{k}_{2}}{{n}^{98}}}{{{n}^{100}}}+\ldots \]
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\underset{n\to \infty }{\mathop{\lim }}\,\frac{1}{100}+\frac{{{k}_{1}}}{n}+\frac{{{k}_{2}}}{{{n}^{2}}}+\ldots \]
Applying the limits, we get
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+\frac{{{k}_{1}}}{\infty }+\frac{{{k}_{2}}}{\infty }+\ldots $
We know, $\frac{1}{\infty }\approx 0$, so
$\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}+0+0+\ldots $
\[\Rightarrow \underset{n\to \infty }{\mathop{\lim }}\,\frac{{{1}^{99}}+{{2}^{99}}+\ldots +{{n}^{99}}}{{{n}^{100}}}=\frac{1}{100}\]
Hence, the correct option for the given question is option (a).
Answer - Option (a)
Note - In this type of question first we have to find the summation of a given series after that check the indeterminate form of limit, then substitute the limiting value you have in your answer.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

