
$
{\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text{ and the vertex}} \\
{\text{is at }}\left( { - 2,2} \right). \\
$
Answer
218.4k+ views
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

