
$
{\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text{ and the vertex}} \\
{\text{is at }}\left( { - 2,2} \right). \\
$
Answer
218.4k+ views
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\
{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\
\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\
\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\
{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\
{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\
{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\
\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\
{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\
\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\
{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\
\Rightarrow 2y + x - 22 = 0 \\
{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\
{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\
\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\
\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\
\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\
\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\
\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\
{\text{So, this is your required equation of parabola}}{\text{.}} \\
{\text{NOTE: - In this particular type of questions first find the intersection}} \\
{\text{ point of axis and directrix, then find out equation of directrix}} \\
{\text{ then apply parabola property you will get your answer}}{\text{.}} \\
$
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

Understanding Electromagnetic Waves and Their Importance

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 - 2025-26

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.3 - 2025-26

NCERT Solutions for Class 11 Maths Chapter 7 Permutations and Combinations

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

