# $

{\text{Find the equation of the parabola if the focus is at}}\left( { - 6, - 6} \right){\text{ and the vertex}} \\

{\text{is at }}\left( { - 2,2} \right). \\

$

Last updated date: 22nd Mar 2023

•

Total views: 313.5k

•

Views today: 5.91k

Answer

Verified

313.5k+ views

$

{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\

{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\

\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\

\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\

{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\

{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\

{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\

\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\

{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\

\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\

{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\

\Rightarrow 2y + x - 22 = 0 \\

{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\

{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\

\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\

\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\

\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\

\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\

\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\

{\text{So, this is your required equation of parabola}}{\text{.}} \\

{\text{NOTE: - In this particular type of questions first find the intersection}} \\

{\text{ point of axis and directrix, then find out equation of directrix}} \\

{\text{ then apply parabola property you will get your answer}}{\text{.}} \\

$

{\text{Let Z}}\left( {{x_1},\;{y_1}} \right){\text{ be the coordinates of the point of intersection of the axis and the directrix of the parabola}}{\text{.}} \\

{\text{Then the vertex V}}\left( { - 2,\;2} \right)\;{\text{is the mid point of the line segment joining Z}}\left( {{x_1},\;{y_1}} \right){\text{ and the focus S}}\left( { - 6,\; - 6} \right). \\

\Rightarrow \dfrac{{{x_1} - 6}}{2} = - 2\; \Rightarrow {x_1} = 2 \\

\& \dfrac{{{y_1} - 6}}{2} = 2 \Rightarrow {y_1} = 10 \\

{\text{Thus the directrix meets the axis at Z}}\left( {2,10} \right). \\

{\text{Let }}{{\text{m}}_1}{\text{ be the slope of axis}}{\text{. Then,}} \\

{{\text{m}}_1}{\text{ = }}\left( {{\text{Slope of the line joining the focus S and vertex V}}} \right) = \dfrac{{ - 6 - 2}}{{ - 6 + 2}} = \dfrac{{ - 8}}{{ - 4}} = 2 \\

\Rightarrow {\text{Slope of the directrix which is perpendicular to axis is }} \\

{\text{m = - }}\dfrac{1}{{{{\text{m}}_1}}} = - \dfrac{1}{2} \\

\Rightarrow {\text{equation of directrix which is passing from }}\left( {2,10} \right){\text{ is}} \\

{\text{y - 10 = - }}\frac{1}{2}\left( {x - 2} \right) \\

\Rightarrow 2y + x - 22 = 0 \\

{\text{Let P}}\left( {x,y} \right){\text{ be a point on parabola}}{\text{. Then,}} \\

{\text{Distance of P from the focus = Perpendicular distance of P from the Directrix }}\left( {{\text{Parabola property}}} \right) \\

\Rightarrow \sqrt {{{\left( {x + 6} \right)}^2} + {{\left( {y + 6} \right)}^2}} = \left| {\dfrac{{2y + x - 22}}{{\sqrt {{2^2} + {1^2}} }}} \right| \\

\Rightarrow {\left( {x + 6} \right)^2} + {\left( {y + 6} \right)^2} = \dfrac{{{{\left( {2y + x - 22} \right)}^2}}}{5} \\

\Rightarrow 5{x^2} + 5{y^2} + 60x + 60y + 360 = 4{y^2} + {x^2} + 484 + 4xy - 44x - 88y \\

\Rightarrow 4{x^2} + {y^2} - 4xy + 104x + 148y - 124 = 0 \\

\Rightarrow {\left( {2x - y} \right)^2} + 4\left( {26x + 37y - 31} \right) = 0 \\

{\text{So, this is your required equation of parabola}}{\text{.}} \\

{\text{NOTE: - In this particular type of questions first find the intersection}} \\

{\text{ point of axis and directrix, then find out equation of directrix}} \\

{\text{ then apply parabola property you will get your answer}}{\text{.}} \\

$

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE