
Find $\dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right]$.
Answer
233.1k+ views
Hint: In the given problem, we are required to differentiate a function involving trigonometric and inverse trigonometric functions. We first simplify the expression of the given function. Then, we use the rules of differentiation in order to differentiate the function. The power rule of differentiation must be known in order to solve the question.
Formula Used: $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step by step answer:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)$.
Now, we know the half angle formula for cosine as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$ . Hence, substituting $\cos x$ as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + 2{{\cos }^2}\left( {\dfrac{x}{2}} \right) - 1}}{2}} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}{2}} } \right)} \right]$
Simplifying the expression, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} \right]$
Now, we know that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$
Using power rule of differentiation $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{1}{2}$
Note: The trigonometric formulae such as the half-angle formula for cosine should be remembered to solve such questions. We should go through the differentiation rules such as the power rule, product rule and quotient rule to do the differentiation of functions. The chain rule of differentiation is followed for differentiating composite functions.
Formula Used: $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Complete step by step answer:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = {\cos ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)$.
Now, we know the half angle formula for cosine as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1 = \cos x$ . Hence, substituting $\cos x$ as $2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + 2{{\cos }^2}\left( {\dfrac{x}{2}} \right) - 1}}{2}} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{2{{\cos }^2}\left( {\dfrac{x}{2}} \right)}}{2}} } \right)} \right]$
Simplifying the expression, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} } \right)} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} \right]$
Now, we know that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$. So, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{d}{{dx}}\left( {\dfrac{x}{2}} \right)$
Using power rule of differentiation $\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left[ {{{\cos }^{ - 1}}\left( {\sqrt {\dfrac{{1 + \cos x}}{2}} } \right)} \right] = \dfrac{1}{2}$
Note: The trigonometric formulae such as the half-angle formula for cosine should be remembered to solve such questions. We should go through the differentiation rules such as the power rule, product rule and quotient rule to do the differentiation of functions. The chain rule of differentiation is followed for differentiating composite functions.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

Other Pages
Understanding Collisions: Types and Examples for Students

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

One Day International Cricket- India Vs New Zealand Records and Score

Highest T20 Scores in Cricket: Top Records & Stats 2025

Makar Sankranti Wishes: Happy Makar Sankranti Wishes in Marathi, Hindi, Kannada, and English

