Answer
Verified
440.4k+ views
Hint: To solve the given equation we use the rule of exponentiation which is as follows \[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]. Then, we simplify the equation and substitute the value. When we solve the equation further we get our answer.
Complete step-by-step answer:
We have given that $ {{a}^{m}}.{{a}^{n}}={{a}^{mn}} $ .
We have to find the value of $ m\left( n-2 \right)+n\left( m-2 \right) $ .
As given $ {{a}^{m}}.{{a}^{n}}={{a}^{mn}} $
Now, we know that according to the rule of exponents if the bases (numbers) are same and the operation between the numbers is multiplication, then the powers of these numbers are just added.
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
So, the given equation becomes \[{{a}^{m+n}}={{a}^{mn}}\]
So, when we compare powers of both side of the equation we get
$ m+n=mn.............(i) $
Now, we have to find the value of $ m\left( n-2 \right)+n\left( m-2 \right) $ .
When we simplify the equation we get
\[\begin{align}
& m\left( n-2 \right)+n\left( m-2 \right) \\
& =mn-2m+mn-2n \\
& =2mn-2m-2n \\
\end{align}\]
Now, substituting the value from equation (i), we get
$ \Rightarrow 2\left( m+n \right)-2m-2n $
Now, simplifying further, we get
$ \begin{align}
& \Rightarrow 2m+2n-2m-2n \\
& =0 \\
\end{align} $
The value of $ m\left( n-2 \right)+n\left( m-2 \right) $ is $ 0 $ .
So, the correct answer is “Option C”.
Note: To solve this type of question one must have the idea about the properties of exponentiation. Exponents are nothing special but the powers of a number. Exponent or power tells us how many times the number is repeated. To simplify the expressions we need to follow the rules of exponents.
Complete step-by-step answer:
We have given that $ {{a}^{m}}.{{a}^{n}}={{a}^{mn}} $ .
We have to find the value of $ m\left( n-2 \right)+n\left( m-2 \right) $ .
As given $ {{a}^{m}}.{{a}^{n}}={{a}^{mn}} $
Now, we know that according to the rule of exponents if the bases (numbers) are same and the operation between the numbers is multiplication, then the powers of these numbers are just added.
\[{{a}^{m}}.{{a}^{n}}={{a}^{m+n}}\]
So, the given equation becomes \[{{a}^{m+n}}={{a}^{mn}}\]
So, when we compare powers of both side of the equation we get
$ m+n=mn.............(i) $
Now, we have to find the value of $ m\left( n-2 \right)+n\left( m-2 \right) $ .
When we simplify the equation we get
\[\begin{align}
& m\left( n-2 \right)+n\left( m-2 \right) \\
& =mn-2m+mn-2n \\
& =2mn-2m-2n \\
\end{align}\]
Now, substituting the value from equation (i), we get
$ \Rightarrow 2\left( m+n \right)-2m-2n $
Now, simplifying further, we get
$ \begin{align}
& \Rightarrow 2m+2n-2m-2n \\
& =0 \\
\end{align} $
The value of $ m\left( n-2 \right)+n\left( m-2 \right) $ is $ 0 $ .
So, the correct answer is “Option C”.
Note: To solve this type of question one must have the idea about the properties of exponentiation. Exponents are nothing special but the powers of a number. Exponent or power tells us how many times the number is repeated. To simplify the expressions we need to follow the rules of exponents.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE