
During the sale, colour pencils were being sold in packs of 24 each and crayons in packs of 32 each. If you want full packs of both and same number of pencils and crayons, how many of each would you need to buy?
Answer
221.7k+ views
Hint- In order to find the same number of crayons and pencils, try to solve using L.C.M.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Number of colour pencils to be packed in a packet \[ = 24\]
Number of crayons to be packed in a packet \[ = 32\]
We have to find the L.C.M of $24$ and $32$.
\[
24 = 2 \times 2 \times 3 \\
32 = 2 \times 2 \times 2 \times 2 \times 2 \\
\]
L.C.M of $24$ and $ 32 $ \[{\text{ = }}2 \times 2 \times 2 \times 2 \times 2 \times 3 = 96\]
Capacity of $1$ packet of colour pencils \[ = 24\]
So, for 96 pencils, number of packets needed \[ = \dfrac{{96}}{{24}} = 4\]
$3$Now, capacity of $1$ packet of crayons \[ = 32\]
SO, for 96 crayons, number of packets needed \[ = \dfrac{{96}}{{32}} = 3\]
$\therefore $ In order to buy full packs of both and same number of pencils and crayons, we need to buy $4$ packets of colour pencils and $3$ packets of crayons.
Note- L.C.M stands for Lowest Common Multiple. For any two numbers a and b, L.C.M is the smallest positive integer that is divided by both a and b. Hence, whenever you see problems like these, L.C.M is the shortest way to find solutions.
Recently Updated Pages
JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

Displacement Current and Maxwell’s Equations Explained

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

