
What is the degeneracy of the level of hydrogen atom that has energy$(\dfrac{-{{R}_{H}}}{9})$?
(A) 16
(B) 9
(C) 4
(D) 1
Answer
221.1k+ views
Hint:Hydrogen atom is a uni-electronic system. It contains only one electron and one proton. The repulsive forces due to electrons are absent in hydrogen atoms. Degeneracy of level means that the orbitals are of equal energy in a particular sub-shell.
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

