
What is the degeneracy of the level of hydrogen atom that has energy$(\dfrac{-{{R}_{H}}}{9})$?
(A) 16
(B) 9
(C) 4
(D) 1
Answer
230.4k+ views
Hint:Hydrogen atom is a uni-electronic system. It contains only one electron and one proton. The repulsive forces due to electrons are absent in hydrogen atoms. Degeneracy of level means that the orbitals are of equal energy in a particular sub-shell.
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Know The Difference Between Fluid And Liquid

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

