Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Position Vector

Reviewed by:
Last updated date: 07th Aug 2024
Total views: 379.5k
Views today: 10.79k

## What is Position Vector?

The Position Vector which is said to be a straight line having one end fixed to a body and the second end that is attached to a moving point. And this is used to describe the position of the point relative to the body. As the point moves the vector’s position will change in length or in direction or at times in both direction and length. If  drawn to some scale, then the change which is in length will signify a change which is in the magnitude of the vector. That is while a change which is in direction will signify a vector that is rotating.

In this article we are going to discover what a vector is as well as a few other important points.

### Displacement of Vectors

The velocity and the Position Vectors which are of a particle are illustrated in Figure given below. The Position Vector which is denoted by r extends from the origin to the particle. While the velocity vector which is denoted by letter v points in the direction of the particle’s motion. The other variables which are appropriate are for describing a moving particle that can be defined in terms of these variables and the elementary variables as well.

(Image will be Updated Soon)

(Image will be Updated Soon)

The momentum which is denoted by letter p of the particle is equal to the product of the velocity and mass that is v of the particle

p=mv.

We shall find the momentum which is useful for describing the motion of electrons in a system which is extended such as a crystal.

The particle's motion which is moving about a center of force can be described using angular momentum . That is defined to be the cross product of the position and vectors momentum which is given as:

ℓ=r×p.

The cross product that is of two vectors is a vector which is having a magnitude equal to the product of the magnitudes of the two vectors and at times the same as the sine of the angle between them. This is denoting the angle which is between the momentum and Position Vectors by θ as the magnitude of the momentum that is the angular vector momentum can be written as:

|ℓ|=|r||p|sinθ.

### Vector of Physics

We can use a vector which is known as the Position Vector to tell us the location of one object that is relative to another. Specifically we can say that a Position Vector is:

A vector that indicates the position of a given point with respect to an arbitrary reference point example origin.

In this article we will discuss the following aspects of Position Vectors:

• Explain what is a Position Vector?

• And how to Find the Position Vector?

Often, we have noticed that the vectors that start at the origin and terminate at any arbitrary point are known as Position Vectors. These are said to determine the position of a point with reference to the origin of that point.

The direction of the vectors or the Position Vector generally points from the origin towards the given point. In the coordinate system of c\Cartesian if point O is the origin and Q is some point that is x1, y1, then the directed Position Vector from point O to point Q is represented as OQ. In the space which is three-dimensional if O = (0,0,0) and Q = (x1, y1, z1), then the Position Vector denoted by r of point Q is represented is:

r = x1i + y1j + z1k

Now let’s suppose that we have two vectors, that are A and B, with Position Vectors we write a = (2,4) and b = (3, 5) respectively. We can then write the coordinates of both the vectors that are A and B as:

A = (2,4), B = (3, 5)

Here before determining the Position Vector of a point we first need to determine the coordinates of those particular pointst. Let’s suppose that we have two points, namely M and N. where  the point M = (x1, y1) and N = (x2, y2). Next we want to find here the Position Vector that too from point M to point N the vector MN. To determine this Position Vector, we simply subtract the corresponding components of M from N:

Written as : MN = (x2-x1, y2-y1)

### Formula

If we consider a point denoted by letter P. Which has the coordinates that are xk, yk in the xy-plane and another point written as Q. Which has the coordinates denoted by xk+1, yk+1. The formula which is to determine the Position Vector that is from P to Q is written as:

PQ = ((xk+1)-xk, (yk+1)-yk)

We can now remember the Position Vector that is PQ which generally refers to a vector that starts at the point P and ends at the point Q. Similarly if we want to find the Position Vector that is from the point Q to the point P then we can write:

QP = (xk – (xk+1), yk – (yk+1))

### Definition of Position Vector:

Position Vector - Explanation, Formula, and FAQs Position Vectors (also Positioning Vector) are a mathematical representation of the position of an object in space. They can be used to calculate relative distances between objects, as well as directions and angles without having to draw them out. Position Vectors are commonly used in engineering and physics calculations, but they can also be useful for everyday math problems such as measuring the distance from one point on a map to another. We will explain what Position Vectors are and how you can use them by answering some common questions that people have about this topic.

The Position Vector is used to find the distance and direction from point-A to point B. Position Vectors are commonly used in engineering and physics calculations, but they can also be useful for everyday math problems such as measuring the distance from one point on a map to another.

How to Position Vectors helps us to find the length of each vector. Position Vectors are commonly used in engineering and physics calculations, but they can also be useful for everyday math problems such as measuring the distance from one point on a map to another.

### What is the Formula for Calculating Position Vector:

If we consider point A with coordinates (x, y) and point B with coordinates (X, y'), the Position Vector from A to B is simply given by:

Position Vector = X - x y' - y

### What's the Difference between Magnitude and Direction?

The magnitude of a vector is simply its "size" or "length", while the direction indicates which way it points. For instance, if you have a vector with a magnitude of three and a direction of 45 degrees, it would be three units long measured along the angle specified by 45 degrees. If you rotated that vector so that it pointed in the opposite direction, its length would still be three units, but its

## FAQs on Position Vector

1. Explain What is Meant By Position Vector?

We can say that the position vector is a straight line that is having one end fixed to a body and the other end attached to a moving point and it is used to describe the position of the point which is a relative point to the body. As the point usually moves, the position vector will also change in length or we can say in direction or in both length and direction

2. Explain is a Position a Vector?

The position of an object is generally given relative to some agreed upon reference point. We can say that the position is a vector quantity. It has a magnitude along with a direction. The magnitude which is a quantity of vectors is a number with units that is telling us how much of the quantity there is and the direction tells us which way it is pointing.

3. Explain What is the Position and Displacement Vector?

The vector which is the position vector is used to specify the position of a certain body. The term displacement vector is used to find the change that is in the position vector of an object. The vector which generally represents the position of an object and the origin as the frame of reference is known as position vector.

4. Explain Can a Position Vector be Negative?

If there are two vectors that are having the same magnitude that is size and the same direction also. Then we can generally call them equal to each other. Just like the scalars which can have negative or positive  values. The  vectors can also be negative or positive. A vector which is negative is a vector which points in the direction opposite to the reference positive direction.

(Image will be Updated Soon)

5. What are Position Vectors used for?

Position Vectors are used for calculating the distance and direction between two points in space. They can also be useful for everyday math problems such as measuring the distance from one point on a map to another. They offer a more concise way of representing position than using Cartesian coordinates. The length of a Position Vector can be calculated using the Pythagorean Theorem. Magnitude can be found with the Pythagorean theorem by squaring both sides of the equation: Magnitude = √((X - x)^² + (y' - y)^²). Direction can be found by taking the arctangent of (y' - y) / (X - x).

6. What is the difference between a Position Vector and a unit vector?

Position Vectors are often used to represent Position Vectors, which can be either normalized or non-normalized depending on what you're using them for. A Unit Vector always has a length of one, while normalizing it will make sure that its direction stays the same no matter where you place it in space. This comes from dividing by the magnitude of the resultant vector: Position Vector / Magnitude = Unit Vector. To know more about this concept, visit the Vedantu website now.

7. What are the best ways to study Position Vectors?

There are several ways to study Position Vectors, depending on what you're studying them for. If you want a more comprehensive overview of this topic, consider reading the entire post at the Vedantu website instead of skimming over each point individually. You can also try watching relevant videos or finding other resources on the Vedantu website that will summarize some key concepts in an easy-to-understand way so that you can get up to speed quickly without having to spend too much time sifting through dense text online.

8. How do you use Position Vectors?

There are lots of applications for Position Vectors, and they can be used to solve a wide range of problems in the real world. They offer a more concise way of representing location than using Cartesian coordinates, which is why engineers and physicists find them useful when building things such as cars or rockets that need to know where certain components should go without requiring too much complex math on top of it all. The key thing about these calculations is not necessarily knowing how to perform each individual one but being able to understand what information needs to be inputted so that you can get an accurate answer right away instead of having to spend hours going over every single detail by hand with paper and pencil! To learn more, visit the Vedantu website now.

9. What's the difference between magnitude and direction?

The magnitude of a vector is simply its "size" or "length", while the direction indicates which way it points. For instance, if you have a vector with a magnitude of three and a direction of 45 degrees, it would be three units long measured along the angle specified by 45 degrees. If you rotated that vector so that it pointed in the opposite direction, its length would still be three units, but its orientation (direction) would be completely different!