
The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ .The distance traversed in first 10 sec is
A.500m
B.300m
C.150m
D.100m
Answer
232.8k+ views
Hint: Firstly, we will use the initial position at time = 0. Then we will put the value of time i.e, $t = 10$ . We will find the position at \[t = 0\] .Then we will find out the displacement vector by subtracting the final position vector at time \[t = 0\] from the initial position vector at time $t = 10$ . We will find only the magnitude of the displacement by taking mod on both sides.
Complete step by step solution
The position of an object is defined as its linear distance as well as its direction with respect to a preassigned reference point. Position is a physical quantity having both magnitude and direction. So, it is a vector quantity. It is called position vector and denoted by the symbol $\vec r$ .
Given that,
Position vector of particle is $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$
So, the position vector is the function of time.
Let, $\vec r(i) = $ initial position vector when time $(t) = 0$
$\therefore \vec r(i) = \vec r(t = 0) = 7\hat k.....(i)$
$\vec r(f) = $ final position vector at time \[\left( t \right) = 10\]
$\therefore \vec r(f) = \vec r(t = 10) = 3 \times {10^2}\hat i + 4 \times {10^2}\hat j + 7\hat k....(ii)$
Displacement is defined as the change in position of a moving body in a fixed direction.
So we can write that,
Displacement vector $(D) = \vec r(f) - \vec r(i)$
$
\left| D \right| = \left| {300\hat i + 400\hat j + (7 - 7)\hat k} \right| \\
\Rightarrow \left| D \right| = \sqrt {{{300}^2} + {{400}^2}} \\
$
$D = 500m$
Hence, distance traversed in first 10 sec is 500m (Option-A)
Note: One may think that after putting the value of $t = 10$ one can obtain the displacement vector. But this is actually a position vector. The displacement vector of a particle is the vector difference between its final and initial position vectors.
Additional Information:
For any particle in three-dimensional space, the displacement is represented by the straight line joining the initial and the final positions of the particle. If a particle travels from the point ${P_1}({x_1},{y_1},{z_1})$ to the point ${P_2}({x_2},{y_2},{z_2})$ then $\vec D$ represents its displacement. The magnitude of the displacement is given by $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} $
Complete step by step solution
The position of an object is defined as its linear distance as well as its direction with respect to a preassigned reference point. Position is a physical quantity having both magnitude and direction. So, it is a vector quantity. It is called position vector and denoted by the symbol $\vec r$ .
Given that,
Position vector of particle is $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$
So, the position vector is the function of time.
Let, $\vec r(i) = $ initial position vector when time $(t) = 0$
$\therefore \vec r(i) = \vec r(t = 0) = 7\hat k.....(i)$
$\vec r(f) = $ final position vector at time \[\left( t \right) = 10\]
$\therefore \vec r(f) = \vec r(t = 10) = 3 \times {10^2}\hat i + 4 \times {10^2}\hat j + 7\hat k....(ii)$
Displacement is defined as the change in position of a moving body in a fixed direction.
So we can write that,
Displacement vector $(D) = \vec r(f) - \vec r(i)$
$
\left| D \right| = \left| {300\hat i + 400\hat j + (7 - 7)\hat k} \right| \\
\Rightarrow \left| D \right| = \sqrt {{{300}^2} + {{400}^2}} \\
$
$D = 500m$
Hence, distance traversed in first 10 sec is 500m (Option-A)
Note: One may think that after putting the value of $t = 10$ one can obtain the displacement vector. But this is actually a position vector. The displacement vector of a particle is the vector difference between its final and initial position vectors.
Additional Information:
For any particle in three-dimensional space, the displacement is represented by the straight line joining the initial and the final positions of the particle. If a particle travels from the point ${P_1}({x_1},{y_1},{z_1})$ to the point ${P_2}({x_2},{y_2},{z_2})$ then $\vec D$ represents its displacement. The magnitude of the displacement is given by $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} $
Recently Updated Pages
JEE Main Course 2026 - Important Updates and Details

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

Chemistry Question Pattern for JEE Main & Board Exams

Chemistry Question Paper PDF Download (2025, 2024) with Solutions

JEE Main Books 2026: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

