Courses
Courses for Kids
Free study material
Free LIVE classes
More

Surface Area of Cuboid

ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon

Area of Cuboid

Imagine objects like a lunch box, television set, shoebox, carton box, bricks, book, mattresses and you would know what a cuboid is and how it looks. These shapes are cuboid. Like said, a cuboid is a 3-D geometrical object which consists of 6 rectangular faces. All angles of a cuboid are right angles and faces opposite to each other are equal. A cuboid is also known as a rectangular solid or a rectangular prism. In a cuboid, the length, width and height may be of different measurements.


Is Cube a Cuboid?

Objects such as Rubik’s cube, ice, dice, Sudoku, sugar cubes, casseroles and milk crates etc are examples of another 3 dimensional shape called a cube. Factually, a cube is a unique form of cuboid in which all sides are similar and squares.


Best Way to Identify a Cuboid

In a cuboid, each face is in the form of a rectangular shape and the corners or the vertices are 90-degree angles. Also, if the opposite faces are always equal to one another then it’s a cuboid. For example, a mattress is a cuboid. It consists of 6 surfaces of which each opposite pair is of similar dimensions.


What is the Volume of Cuboids?

We can simply find the volume of a cuboid by multiplying the base area with the height. Thus,

volume of cuboid (V) = A  x h

or simply

V = l × b × h


Total Surface Area of Cuboid

If l is the length, b is the breadth and h is the height of a given cuboid, then the sum of areas of 6 rectangles of a cuboid provides the TSA of the cuboid.


Total Surface Area of Cuboid Formula

TSA of cuboid formula = 2 (lw + wh + hl)

Where,

L = length

W= width b= breadth

H = height


Lateral Surface Area Of Cuboid

The sum of the area of 4 side faces i.e. leaving the top and the bottom face provides the LSA of a cuboid. An example of the LSA is the sum of the area of the four walls of a room.


Lateral Surface Area of Cuboid Formula

LSA of cuboid formula = 2 (lh + wh) = 2 h (l + w)

Or simply, 2 (l+w)h

Where,

L = length

W= width or b= breadth

H = height


Solved Examples on Surface Area of Cuboid


Example 1:

The length, width and height of a cuboid are 11cm, 9cm and 15cm respectively. Calculate the total surface area of the cuboid.


Solution:

TSA of a cuboid is given by:  2 (l*w + w*h + w*l)

Given that:

l = 11cm

w = 9cm

h = 15cm

By substituting the values in the expression we will obtain,

TSA = 2 (11*9 + 9*15 + 15*11)

TSA = 2(99 + 135 + 165)

TSA = 2 * 399

TSA = 798cm²


Example 2:

Find out the lateral surface area of a cube having an edge of 20cm?

 

Solution:

We know that the LSA of a cuboid is given by 2(l+b)h

Now, since a cube is also a cuboid in which l=b=h=a, thus LSA of a cube = 2(a+a)

Or simply,

a = 4a2

 

Formula for Lateral Surface Area of Cube = 4a2

Given that a = 20 cm.

Therefore,

LSA = 4(202) = 1600 cm2


Example 3:

Williams built a rectangular cardboard box 20 cm high. It has a square base and a volume of 2000 cm³. Then he realized that he did not require a box that elongated, so he cut short the height of the box decreasing its volume to 1,000 cm³. Find out the height of the new box and is the new box cubicle?


Solution:

Volume of cuboid (V)  = length × width × height = Base area × height.

Given that,

V = 2000 cm³,

height = 20 cm

Substituting the values in the formula, we obtain

Base area = 2000/20 = 100 cm²

We also know that the base of this box is a square.

Thus, it indicates that the length = width.

Hence, the length of square base = √100 = 10 cm

After shortening of height, new volume = 1000

= 10 ×10 x new height

Thus, new height = 1000/ 10 × 10 = 10 cm

As all the dimensions of the solid, l, w, h measure similar, the resulting solid is also a cube.

Last updated date: 30th May 2023
Total views: 270k
Views today: 6.26k

FAQs on Surface Area of Cuboid

Q1. What is the Diagonal of a Cuboid?

Answer: The length of the longest diagonal of a cuboid is given as:

Length of diagonal of cuboid = √ (l² + b² + h²), where l= length, b= breadth, h= height

Q2. What are the Properties of a Cube Number?

Answer:

  • Cubes of positive numbers are positive invariably. 

             For example, cube of +3 is = (+3) × (+3) × (+3) = +27

  • Cubes of positive numbers are invariably negative. 

            For example, cube of -3 is = (-3) × (-3) × (-3) = -27

  • Cubes of even numbers even invariably.

  • Cubes of odd numbers are odd invariably.

Q3. How Do We Measure the Volume of Water?

Answer: Generally, it is not feasible to measure the volume of water until it is stored in a container, which can be a cube, cuboid, cone, cylinder, and cone etc. And once it is inside a container we need to compute the volume of the container in order to ascertain the volume of water.

Q4. What is Meant by Nets of a Cuboid?

Answer: Another way to have a perception of the surface area of a cuboid is to take into account a net of the cuboid. The net is a 2-D geometrical shape that can be molded to create a 3-D object.


Imagine cutting along some edges of a cuboid and opening it up to create a plane figure. The plane figure is what we call the net of the cuboid.