
You are listening to an $A$ note played on a violin string. Let the subscript $s$ refers to the violin string and $a$ refer to the air. Then:
(A) ${f_s} = {f_a}$ but ${\lambda _s} \ne {\lambda _a}$
(B) ${f_s} = {f_a}$ but ${\lambda _s} = {\lambda _a}$
(C) ${\lambda _s} = {\lambda _a}$ but ${f_s} \ne {f_a}$
(D) ${\lambda _s} \ne {\lambda _a}$ but ${f_s} \ne {f_a}$
Answer
207k+ views
Hint When the violin is played, the music is produced by the vibration of the string and the vibration of the air which are surrounding the vibrating string. And this vibration of the string and the vibration of the air lead to the formation of the frequency of the air and the frequency of the string. If there is frequency, then there is also wave length.
Complete step by step solution
Given that,
You are listening to an $A$ note played on a violin string. Let the subscript $s$ refers to the violin string and $a$ refer to the air. The sound of the violin or the music of the violin is produced by the vibration of the string and the vibration of the air. The vibration is produced by disturbing the string which is tied tightly and stretched as long as possible, then we touch the string slightly, then the vibration of the string is more. Then the violin player plays the note $A$, there are different types of sounds produced by the violin, this is due to the vibration of the string and the vibration of the air around the string.
The frequency is defined as the number of cycles per second or the number of vibrations per second. If there is a vibration, so that there will be the frequency, if there is the frequency definitely there must be the wavelength. The frequency of the string is equal to the frequency of the air because the source to produce the frequency is the same. But the air and the string are different mediums so the velocity of the sound will change, so the wavelengths are not equal.
Hence, the option (A) is the correct answer.
Note
The frequency of the sound is directly proportional to the velocity of the sound, as the velocity increases the frequency also increases. The frequency of the sound is inversely proportional to the wavelength of the sound, as the wavelength increases the frequency will decrease. $f = \dfrac{v}{\lambda }$, where, $f$ is the frequency, $v$ is the velocity and $\lambda $ is the wavelength.
Complete step by step solution
Given that,
You are listening to an $A$ note played on a violin string. Let the subscript $s$ refers to the violin string and $a$ refer to the air. The sound of the violin or the music of the violin is produced by the vibration of the string and the vibration of the air. The vibration is produced by disturbing the string which is tied tightly and stretched as long as possible, then we touch the string slightly, then the vibration of the string is more. Then the violin player plays the note $A$, there are different types of sounds produced by the violin, this is due to the vibration of the string and the vibration of the air around the string.
The frequency is defined as the number of cycles per second or the number of vibrations per second. If there is a vibration, so that there will be the frequency, if there is the frequency definitely there must be the wavelength. The frequency of the string is equal to the frequency of the air because the source to produce the frequency is the same. But the air and the string are different mediums so the velocity of the sound will change, so the wavelengths are not equal.
Hence, the option (A) is the correct answer.
Note
The frequency of the sound is directly proportional to the velocity of the sound, as the velocity increases the frequency also increases. The frequency of the sound is inversely proportional to the wavelength of the sound, as the wavelength increases the frequency will decrease. $f = \dfrac{v}{\lambda }$, where, $f$ is the frequency, $v$ is the velocity and $\lambda $ is the wavelength.
Recently Updated Pages
JEE Main 2026 Session 1 Admit Card Release Date and Direct Download Link

JEE Main Exam Pattern 2026 - NTA Paper Pattern, Marking Scheme, Total Marks

JEE Main Slot Booking 2026 NTA Exam Slot Allotment Dates and Shifts

Self Declaration Form for JEE Mains 2026 - Mandatory Details and Filling Process

JEE Main 2026 Registration- Dates, Process, Documents, and Important Details

JEE Main 2026 Eligibility Criteria – Age Limit, Marks, Attempts, and More

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Hybridisation in Chemistry – Concept, Types & Applications

