
Work done for the process shown in the figure is:

(A) $1\,J$
(B) $1.5\,J$
(C) $4.5\,J$
(D) $0.3\,J$
Answer
162k+ views
Hint From the given figure, the detailed figure is drawn, then the solution can be determined. In the detailed diagram it forms one rectangle and one right angled triangle. By finding the area of the two shapes and adding the two areas is equal to the work done.
Useful formula:
The area of the rectangle is given as,
${A_r} = l \times b$
Where, ${A_r}$ is the area of the rectangle, $l$ is the length of the rectangle and $b$ is the breadth of the rectangle.
The area of the right-angled triangle is given as,
${A_t} = \dfrac{{ab}}{2}$
Where, ${A_t}$ is the area of the right angle triangle, $a$ is the base of the triangle and $b$ is the height of the triangle.
Complete step by step solution
Given that,
The initial condition of the volume is, ${V_1} = 10\,cc$.
The final condition of the volume is, ${V_2} = 25\,cc$.
The initial condition of the pressure is, ${P_1} = 10\,kPa$.
The final condition of the pressure is, ${P_2} = 30\,kPa$.
The work done of the process is given by the following figure.

From the above diagram, the area of the rectangle is given by,
${A_r} = l \times b$
By substituting the length and the breadth of the rectangle from the above diagram, then the above equation is written as,
${A_r} = 10 \times 15$
By multiplying the terms in the above equation, then the above equation is written as,
${A_r} = 150\,kPa.cc$
From the above diagram, the area of the triangle is given by,
${A_t} = \dfrac{{ab}}{2}$
By substituting the base and the height of the triangle from the above diagram, then the above equation is written as,
${A_t} = \dfrac{{20 \times 15}}{2}$
By multiplying the terms in the above equation, then the above equation is written as,
${A_t} = \dfrac{{300}}{2}$
By dividing the terms in the above equation, then the above equation is written as,
${A_t} = 150\,kPa.cc$
The work done is the sum of the two areas, then the work done is given as,
$W = 150 + 150$
By adding the terms in the above equation, then the above equation is written as,
$W = 300\,kPa.cc$
Then the above equation is written as,
$W = 0.3\,J$
Hence, the option (D) is the correct answer.
Note: The work done of the object is directly proportional to the force of the object and the distance between them. As the force of the object and the distance between them increases, then the work done of the object is also increasing. As the force of the object and the distance between them decreases, then the work done of the object is also decreasing.
Useful formula:
The area of the rectangle is given as,
${A_r} = l \times b$
Where, ${A_r}$ is the area of the rectangle, $l$ is the length of the rectangle and $b$ is the breadth of the rectangle.
The area of the right-angled triangle is given as,
${A_t} = \dfrac{{ab}}{2}$
Where, ${A_t}$ is the area of the right angle triangle, $a$ is the base of the triangle and $b$ is the height of the triangle.
Complete step by step solution
Given that,
The initial condition of the volume is, ${V_1} = 10\,cc$.
The final condition of the volume is, ${V_2} = 25\,cc$.
The initial condition of the pressure is, ${P_1} = 10\,kPa$.
The final condition of the pressure is, ${P_2} = 30\,kPa$.
The work done of the process is given by the following figure.

From the above diagram, the area of the rectangle is given by,
${A_r} = l \times b$
By substituting the length and the breadth of the rectangle from the above diagram, then the above equation is written as,
${A_r} = 10 \times 15$
By multiplying the terms in the above equation, then the above equation is written as,
${A_r} = 150\,kPa.cc$
From the above diagram, the area of the triangle is given by,
${A_t} = \dfrac{{ab}}{2}$
By substituting the base and the height of the triangle from the above diagram, then the above equation is written as,
${A_t} = \dfrac{{20 \times 15}}{2}$
By multiplying the terms in the above equation, then the above equation is written as,
${A_t} = \dfrac{{300}}{2}$
By dividing the terms in the above equation, then the above equation is written as,
${A_t} = 150\,kPa.cc$
The work done is the sum of the two areas, then the work done is given as,
$W = 150 + 150$
By adding the terms in the above equation, then the above equation is written as,
$W = 300\,kPa.cc$
Then the above equation is written as,
$W = 0.3\,J$
Hence, the option (D) is the correct answer.
Note: The work done of the object is directly proportional to the force of the object and the distance between them. As the force of the object and the distance between them increases, then the work done of the object is also increasing. As the force of the object and the distance between them decreases, then the work done of the object is also decreasing.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
