
Without actually performing the long division, find if $\dfrac{{987}}{{10500}}$ will have the terminating or the non-terminating (repeating) decimal expansion. Give reason.
Answer
219k+ views
Hint: Without division, we can say that the decimal is terminating or non-terminating by checking its denominator. If the denominator is divisible by $2$ only,$5$ only or by both of them, then it will be terminating otherwise non-terminating.
Complete step by step solution:
Now as we know that any rational number can be expressed in the decimal form and now it may be terminating or non-terminating decimal.
Now before solving this problem, you should be familiar with the two terms which are terminating and non-terminating decimals. Basically, terminating decimals are those decimals which terminate or come to an end.
For example$ \Rightarrow \dfrac{1}{5} = 0.2,\dfrac{{10}}{{20}} = 0.5$
So $0.2,0.5$ are the terminating decimals.
The decimals which do not terminate or keep on repeating after the decimal point are known as non-terminating decimals. This means that they have no specific ending.
For example$:\dfrac{1}{3} = 0.33333........{\text{and so on}}$
$\pi = 3.141592653..........{\text{so on}}$
These are the examples of the non-terminating decimals.
Now we can find without dividing whether the given decimal is terminating or non-terminating.
Any decimal in the form of $\dfrac{p}{{{2^n} \times {5^m}}}$where $p$ is any integer and $m,n$ are whole numbers, then the rational will be terminating.
For example: $\dfrac{5}{{100}}$, here $100$ can be written as $100 = {5^2} \times {2^2}$
So it is of the form $\dfrac{5}{{{5^2} \times {2^2}}}$
So it is terminating decimal. Now we are given to find whether $\dfrac{{987}}{{10500}}$ terminates or not.
First of all, cancel it with the common multiple
$\dfrac{{987}}{{10500}}$$ = \dfrac{{47}}{{500}}$
Now we are supposed to find the multiple of $500$.
$500 = 2 \times 2 \times 5 \times 5 \times 5$
So it can be written as ${5^3} \times {2^2}$.
Hence it is a terminating decimal as it is divisible by $2.5$ only.
Note: For applying $\dfrac{p}{{{2^m} \times {5^n}}}$formula to determine whether it is terminating or non terminating, first of all divide numerator and denominator with common multiples and write in simplest form for example $\dfrac{{500}}{{1550}}$is given then its simplest form would be $\dfrac{{10}}{{31}}$.
Complete step by step solution:
Now as we know that any rational number can be expressed in the decimal form and now it may be terminating or non-terminating decimal.
Now before solving this problem, you should be familiar with the two terms which are terminating and non-terminating decimals. Basically, terminating decimals are those decimals which terminate or come to an end.
For example$ \Rightarrow \dfrac{1}{5} = 0.2,\dfrac{{10}}{{20}} = 0.5$
So $0.2,0.5$ are the terminating decimals.
The decimals which do not terminate or keep on repeating after the decimal point are known as non-terminating decimals. This means that they have no specific ending.
For example$:\dfrac{1}{3} = 0.33333........{\text{and so on}}$
$\pi = 3.141592653..........{\text{so on}}$
These are the examples of the non-terminating decimals.
Now we can find without dividing whether the given decimal is terminating or non-terminating.
Any decimal in the form of $\dfrac{p}{{{2^n} \times {5^m}}}$where $p$ is any integer and $m,n$ are whole numbers, then the rational will be terminating.
For example: $\dfrac{5}{{100}}$, here $100$ can be written as $100 = {5^2} \times {2^2}$
So it is of the form $\dfrac{5}{{{5^2} \times {2^2}}}$
So it is terminating decimal. Now we are given to find whether $\dfrac{{987}}{{10500}}$ terminates or not.
First of all, cancel it with the common multiple
$\dfrac{{987}}{{10500}}$$ = \dfrac{{47}}{{500}}$
Now we are supposed to find the multiple of $500$.
$500 = 2 \times 2 \times 5 \times 5 \times 5$
So it can be written as ${5^3} \times {2^2}$.
Hence it is a terminating decimal as it is divisible by $2.5$ only.
Note: For applying $\dfrac{p}{{{2^m} \times {5^n}}}$formula to determine whether it is terminating or non terminating, first of all divide numerator and denominator with common multiples and write in simplest form for example $\dfrac{{500}}{{1550}}$is given then its simplest form would be $\dfrac{{10}}{{31}}$.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

JEE Main Maths Notes 2026 FREE PDF Download

JEE Main Chemistry Short Notes 2026 FREE PDF Download

JEE Main Physics Notes 2026 FREE PDF Download

JEE Main 2026 Revision Notes with Solutions | Physics, Chemistry, Maths

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume 2025-26

Fuel Cost Calculator – Estimate Your Journey Expenses Easily

NCERT Solutions For Class 9 Maths Chapter 11 Surface Areas And Volumes

NCERT Solutions For Class 9 Maths Chapter 12 Statistics

NCERT Solutions For Class 9 Maths Chapter 10 Heron's Formula

