
With what minimum acceleration can a fireman slide down a rope whose breaking strength is two third of his weight?
A) $\dfrac{g}{2}$
B) $\dfrac{2g}{3}$
C) $\dfrac{3g}{2}$
D) $\dfrac{g}{3}$
Answer
216k+ views
Hint: Breaking strength of a rope is nothing but a tension in a rope. Now use Newton’s second law of motion to form a relation and find the minimum acceleration.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

