
Which two of the following five physical parameters have the same dimensions?
(A) Energy Density
(B) Refractive Index
(C) Dielectric constant
(D) Young’s Modulus
(E) Magnetic field
A) A and B
B) B and D
C) A and D
D) None of these
Answer
233.1k+ views
Hint: The power to which fundamental units are raised in order to obtain the unit of a physical quantity is called the dimensions of that physical quantity. Dimensions of a physical quantity do not depend on the system of units. We’ll go over the various physical quantities one-by-one and then compare the dimensions.
Formula Used:
\[\text{Energy density = }\dfrac{\text{Energy}}{\text{Volume}}\] , \[{\text{Young's Modulus = }}\dfrac{{{\text{Linear Stress}}}}{{{\text{Linear Strain}}}}\]
Complete step by step solution:
Energy density can be said to be the energy per unit volume. The energy of a body can be said to be equivalent to the work done, which in turn is equivalent to the product of the force and the displacement. Force is a product of the mass and acceleration of a body. Representing the above analysis in equation form, we get
\[\begin{align}
& \text{Energy density = }\dfrac{\text{Energy}}{\text{Volume}}=\dfrac{\text{Work done}}{\text{Volume}} \\
& \Rightarrow \text{Energy density =}\dfrac{\text{Force}\times \text{Displacement}}{\text{Volume}} \\
& \Rightarrow \text{Energy density =}\dfrac{\text{Mass}\times \text{acceleration}\times \text{Displacement}}{\text{Volume}} \\
\end{align}\]
The dimensions of Energy density can now be given as
\[\begin{align}
& \text{Energy density =}\dfrac{\left[ M \right]\times \left[ L{{T}^{-2}} \right]\times \left[ L \right]}{\left[ {{L}^{3}} \right]} \\
& \Rightarrow \text{Energy density =}\left[ M{{L}^{-1}}{{T}^{-2}} \right] \\
\end{align}\]
Since, the refractive index is a ratio, it is a dimensionless physical quantity. Similarly, the dielectric constant is also a ratio and is thus a dimensionless physical quantity. Both the Refractive index and Dielectric constant have a dimension of \[1\].
Young’s Modulus of a substance is a ratio of the linear stress to the linear strain. Since strain is a ratio and hence dimensionless. Young’s modulus has the same dimensions as linear stress, which is force per unit area. Force is equal to the product of mass and acceleration. Representing Young’s modulus in equation form, we have
\[{\text{Young's Modulus = }}\dfrac{{{\text{Linear Stress}}}}{{{\text{Linear Strain}}}}\]
Dimensions of Young’s Modulus=Dimensions of linear stress ($\because$ Strain is dimensionless)
\[{\text{Linear Stress = }}\dfrac{{{\text{Force}}}}{{{\text{Area}}}}{\text{ = }}\dfrac{{{\text{Mass}} \times {\text{acceleration}}}}{{{\text{Area}}}}\]
The dimensions of Young’s modulus can now be given as
\[ {\text{Linear Stress = }}\dfrac{{{\text{[M]}} \times [L{T^{ - 2}}]}}{{\left[ {{L^2}} \right]}}\]
\[\Rightarrow {\text{Young's Modulus = }}\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\]
From the solution given above, we can say that Energy Density and Young’s Modulus have the same dimensions. We can go forward and find the dimensions of the Magnetic Field but we already have our answer, so you can skip that part and say that:
Option (C) is the correct answer.
Note: In the given question, we converted the given physical quantities into the basic units. But for that, we must know the dimensions of several basic quantities like mass, acceleration, time, area, volume, velocity, etc. Acceleration has dimensions \[\left[ L{{T}^{-2}} \right]\] , velocity has dimensions \[\left[ L{{T}^{-1}} \right]\] , area has dimensions \[\left[ {{L}^{2}} \right]\] , volume has dimensions \[\left[ {{L}^{3}} \right]\]. Without knowing the dimensions of these basic quantities, you cannot reach the correct answer.
Formula Used:
\[\text{Energy density = }\dfrac{\text{Energy}}{\text{Volume}}\] , \[{\text{Young's Modulus = }}\dfrac{{{\text{Linear Stress}}}}{{{\text{Linear Strain}}}}\]
Complete step by step solution:
Energy density can be said to be the energy per unit volume. The energy of a body can be said to be equivalent to the work done, which in turn is equivalent to the product of the force and the displacement. Force is a product of the mass and acceleration of a body. Representing the above analysis in equation form, we get
\[\begin{align}
& \text{Energy density = }\dfrac{\text{Energy}}{\text{Volume}}=\dfrac{\text{Work done}}{\text{Volume}} \\
& \Rightarrow \text{Energy density =}\dfrac{\text{Force}\times \text{Displacement}}{\text{Volume}} \\
& \Rightarrow \text{Energy density =}\dfrac{\text{Mass}\times \text{acceleration}\times \text{Displacement}}{\text{Volume}} \\
\end{align}\]
The dimensions of Energy density can now be given as
\[\begin{align}
& \text{Energy density =}\dfrac{\left[ M \right]\times \left[ L{{T}^{-2}} \right]\times \left[ L \right]}{\left[ {{L}^{3}} \right]} \\
& \Rightarrow \text{Energy density =}\left[ M{{L}^{-1}}{{T}^{-2}} \right] \\
\end{align}\]
Since, the refractive index is a ratio, it is a dimensionless physical quantity. Similarly, the dielectric constant is also a ratio and is thus a dimensionless physical quantity. Both the Refractive index and Dielectric constant have a dimension of \[1\].
Young’s Modulus of a substance is a ratio of the linear stress to the linear strain. Since strain is a ratio and hence dimensionless. Young’s modulus has the same dimensions as linear stress, which is force per unit area. Force is equal to the product of mass and acceleration. Representing Young’s modulus in equation form, we have
\[{\text{Young's Modulus = }}\dfrac{{{\text{Linear Stress}}}}{{{\text{Linear Strain}}}}\]
Dimensions of Young’s Modulus=Dimensions of linear stress ($\because$ Strain is dimensionless)
\[{\text{Linear Stress = }}\dfrac{{{\text{Force}}}}{{{\text{Area}}}}{\text{ = }}\dfrac{{{\text{Mass}} \times {\text{acceleration}}}}{{{\text{Area}}}}\]
The dimensions of Young’s modulus can now be given as
\[ {\text{Linear Stress = }}\dfrac{{{\text{[M]}} \times [L{T^{ - 2}}]}}{{\left[ {{L^2}} \right]}}\]
\[\Rightarrow {\text{Young's Modulus = }}\left[ {M{L^{ - 1}}{T^{ - 2}}} \right]\]
From the solution given above, we can say that Energy Density and Young’s Modulus have the same dimensions. We can go forward and find the dimensions of the Magnetic Field but we already have our answer, so you can skip that part and say that:
Option (C) is the correct answer.
Note: In the given question, we converted the given physical quantities into the basic units. But for that, we must know the dimensions of several basic quantities like mass, acceleration, time, area, volume, velocity, etc. Acceleration has dimensions \[\left[ L{{T}^{-2}} \right]\] , velocity has dimensions \[\left[ L{{T}^{-1}} \right]\] , area has dimensions \[\left[ {{L}^{2}} \right]\] , volume has dimensions \[\left[ {{L}^{3}} \right]\]. Without knowing the dimensions of these basic quantities, you cannot reach the correct answer.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

Class 11 JEE Main Physics Mock Test 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

