
Which of the following sets of displacements might be capable of bringing a car to its starting point?
(A) ${\text{4,6,8 and 15 km}}$
(B) ${\text{10,30,50 and 120 km}}$
(C) ${\text{5,10,30 and 50 km}}$
(D) ${\text{40,50,75 and 200 km}}$
Answer
218.1k+ views
Hint: A car can return to its starting point, only when the sum of three displacements is greater than the value of the maximum displacement. In any other case, this would not be possible.
Complete Step by Step Solution: It has been given that a set of displacements has been arranged such that a car would be able to come back to its starting point.
For the second set, we have ${\text{10,30,50 and 120 km}}$. The maximum value of displacement is 120km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$10 + 30 + 50 = 90km$.
The sum of the three displacements is less than the value of the maximum displacement. $90km < 120km$.
Thus, it cannot be possible.
For the third set, we have ${\text{5,10,30 and 50 km}}$. The maximum value of displacement is 50km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$5 + 10 + 30 = 45km$.
The sum of the three displacements is less than the value of the maximum displacement. $45km < 50km$.
Thus, it cannot be possible.
For the fourth set, we have ${\text{40,50,75 and 200 km}}$. The maximum value of displacement is 200km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$40 + 50 + 75 = 165km$.
The sum of the three displacements is less than the value of the maximum displacement. $165km < 200km$.
Thus, it cannot be possible.
For the first set of displacements, we have ${\text{4,6,8 and 15 km}}$.The maximum value of displacement is 15km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$4 + 6 + 8 = 18km$.
The sum of the three displacements is more than the value of the maximum displacement. $18km > 15km$.
Thus, this is the only case where this set of displacements might be capable of bringing a car to its starting point.
Hence the correct answer is Option A.
Note: If an object moves relative to a reference frame—for example, if a professor moves to the right relative to a whiteboard, or a passenger moves toward the rear of an airplane—then the object’s position changes. This change in position is known as displacement. The word displacement implies that an object has moved, or has been displaced. Displacement is defined to be the change in position of an object. Displacement is a vector. This means it has a direction as well as a magnitude and is represented visually as an arrow that points from the initial position to the final position.
Complete Step by Step Solution: It has been given that a set of displacements has been arranged such that a car would be able to come back to its starting point.
For the second set, we have ${\text{10,30,50 and 120 km}}$. The maximum value of displacement is 120km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$10 + 30 + 50 = 90km$.
The sum of the three displacements is less than the value of the maximum displacement. $90km < 120km$.
Thus, it cannot be possible.
For the third set, we have ${\text{5,10,30 and 50 km}}$. The maximum value of displacement is 50km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$5 + 10 + 30 = 45km$.
The sum of the three displacements is less than the value of the maximum displacement. $45km < 50km$.
Thus, it cannot be possible.
For the fourth set, we have ${\text{40,50,75 and 200 km}}$. The maximum value of displacement is 200km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$40 + 50 + 75 = 165km$.
The sum of the three displacements is less than the value of the maximum displacement. $165km < 200km$.
Thus, it cannot be possible.
For the first set of displacements, we have ${\text{4,6,8 and 15 km}}$.The maximum value of displacement is 15km. Even if the car travels in a straight line, the sum of the first three displacements shall be,
$4 + 6 + 8 = 18km$.
The sum of the three displacements is more than the value of the maximum displacement. $18km > 15km$.
Thus, this is the only case where this set of displacements might be capable of bringing a car to its starting point.
Hence the correct answer is Option A.
Note: If an object moves relative to a reference frame—for example, if a professor moves to the right relative to a whiteboard, or a passenger moves toward the rear of an airplane—then the object’s position changes. This change in position is known as displacement. The word displacement implies that an object has moved, or has been displaced. Displacement is defined to be the change in position of an object. Displacement is a vector. This means it has a direction as well as a magnitude and is represented visually as an arrow that points from the initial position to the final position.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

