
Which is correct for any H-like species?
(A) \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\]
(B) \[({E_2} - {E_1}) < ({E_3} - {E_2}) < ({E_4} - {E_3})\]
(C) \[({E_2} - {E_1}) = ({E_3} - {E_2}) = ({E_4} - {E_3})\]
(D) \[({E_2} - {E_1}) = \dfrac{1}{4}({E_3} - {E_2}) = \dfrac{1}{9}({E_4} - {E_3})\]
Answer
225k+ views
Hint: Quantum numbers are characteristic quantities that are used to describe the various properties of an electron in an atom like the position, energy or spin of the electrons. There are four quantum numbers namely, principal quantum number, azimuthal quantum number, magnetic quantum number and spin quantum number.
Complete step by step solution:
Principal quantum number is denoted by ‘n’ and it represents the electron shell of an atom. For an atom, its energy is inversely proportional to the square of its principal quantum number.
\[{\text{E}} \propto - \dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\]
Where E is the energy of an electron and n is a principal quantum number. Now we calculate the values of \[({E_2} - {E_1})\],\[({E_3} - {E_2})\]and \[({E_4} - {E_3})\].
For \[({E_2} - {E_1})\], \[{n_1} = 1,{n_2} = 2\]
\[
{{\text{E}}_2} - {E_1} \propto - \left( {\dfrac{{\text{1}}}{{{2^2}}} - \dfrac{1}{{{1^2}}}} \right) \\
{{\text{E}}_2} - {E_1} \propto 0.75 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{3}}}{\text{ - }}{{\text{E}}_{\text{2}}}{\text{)}}\],\[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_{\text{2}}}{\text{ = 2}}\]
\[
{{\text{E}}_3} - {E_2} \propto - \left( {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{1}{{{2^2}}}} \right) \\
{{\text{E}}_3} - {E_2} \propto 0.14 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{4}}}{\text{ - }}{{\text{E}}_{\text{3}}}{\text{)}}\], \[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_4}{\text{ = 4}}\]
\[
{{\text{E}}_4} - {E_3} \propto - \left( {\dfrac{{\text{1}}}{{{4^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
{{\text{E}}_4} - {E_3} \propto 0.049 \\
\]
So, the correct relationship for H-like species is, \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\].
Hence the correct option is (A).
Note: Similarly, Azimuthal quantum number is denoted by ‘l’ and it represents the number of angular nodes. Magnetic quantum number is denoted by ‘m’ and explains the angular momentum. Spin quantum number is denoted by ‘s’ and explains the direction of spin.
Complete step by step solution:
Principal quantum number is denoted by ‘n’ and it represents the electron shell of an atom. For an atom, its energy is inversely proportional to the square of its principal quantum number.
\[{\text{E}} \propto - \dfrac{{\text{1}}}{{{{\text{n}}^{\text{2}}}}}\]
Where E is the energy of an electron and n is a principal quantum number. Now we calculate the values of \[({E_2} - {E_1})\],\[({E_3} - {E_2})\]and \[({E_4} - {E_3})\].
For \[({E_2} - {E_1})\], \[{n_1} = 1,{n_2} = 2\]
\[
{{\text{E}}_2} - {E_1} \propto - \left( {\dfrac{{\text{1}}}{{{2^2}}} - \dfrac{1}{{{1^2}}}} \right) \\
{{\text{E}}_2} - {E_1} \propto 0.75 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{3}}}{\text{ - }}{{\text{E}}_{\text{2}}}{\text{)}}\],\[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_{\text{2}}}{\text{ = 2}}\]
\[
{{\text{E}}_3} - {E_2} \propto - \left( {\dfrac{{\text{1}}}{{{3^2}}} - \dfrac{1}{{{2^2}}}} \right) \\
{{\text{E}}_3} - {E_2} \propto 0.14 \\
\]
For \[{\text{(}}{{\text{E}}_{\text{4}}}{\text{ - }}{{\text{E}}_{\text{3}}}{\text{)}}\], \[{{\text{n}}_3}{\text{ = 3,}}{{\text{n}}_4}{\text{ = 4}}\]
\[
{{\text{E}}_4} - {E_3} \propto - \left( {\dfrac{{\text{1}}}{{{4^2}}} - \dfrac{1}{{{3^2}}}} \right) \\
{{\text{E}}_4} - {E_3} \propto 0.049 \\
\]
So, the correct relationship for H-like species is, \[({E_2} - {E_1}) > ({E_3} - {E_2}) > ({E_4} - {E_3})\].
Hence the correct option is (A).
Note: Similarly, Azimuthal quantum number is denoted by ‘l’ and it represents the number of angular nodes. Magnetic quantum number is denoted by ‘m’ and explains the angular momentum. Spin quantum number is denoted by ‘s’ and explains the direction of spin.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

