Answer
Verified
85.5k+ views
Hint: Know the relation between height of water in a capillary tube and the radius of the capillarity. Apply the given question condition with the relation and find the suitable solution.
Complete step by step Solution:
The given statement says that the water rises to a height of h in a capillary tube, when it is in contact with the fluid surface. So, at a normal condition, water height h is given as \[h = \dfrac{{2S}}{{\rho gR}}\], where R is radius of capillarity, g is gravity constant and \[\rho \] is liquid density.
Now consider the second statement, if the length of the capillary tube is made less than h,
It is clear that, Height h is inversely proportional to the capillary radius R. So, it is understandable that, when height above the surface is decreased, there won’t be any motion as the water rises till height h and stays put.
Overflowing of water is impossible because there isn’t any external pull experienced by the water molecules that cause it to overflow from the capillary tube. If the force is increased then, there are chances that water levels might witness an overflow. At the given height, the water present inside the column balances the upward force, thus making it stay inside the tube.
Hence, Option (c) is the right answer
Note:
Capillary rise of fluid is defined as the ability of fluids to flow through narrow spaces. When a capillary tube is placed on a fluid containing a tank, the liquid on the surface begins to flow inside the walls of the capillary tube, which rises against the gravity. The liquid rises due to the adhesion, cohesion and surface tension it experiences due to the contact with the tube surface.
Complete step by step Solution:
The given statement says that the water rises to a height of h in a capillary tube, when it is in contact with the fluid surface. So, at a normal condition, water height h is given as \[h = \dfrac{{2S}}{{\rho gR}}\], where R is radius of capillarity, g is gravity constant and \[\rho \] is liquid density.
Now consider the second statement, if the length of the capillary tube is made less than h,
It is clear that, Height h is inversely proportional to the capillary radius R. So, it is understandable that, when height above the surface is decreased, there won’t be any motion as the water rises till height h and stays put.
Overflowing of water is impossible because there isn’t any external pull experienced by the water molecules that cause it to overflow from the capillary tube. If the force is increased then, there are chances that water levels might witness an overflow. At the given height, the water present inside the column balances the upward force, thus making it stay inside the tube.
Hence, Option (c) is the right answer
Note:
Capillary rise of fluid is defined as the ability of fluids to flow through narrow spaces. When a capillary tube is placed on a fluid containing a tank, the liquid on the surface begins to flow inside the walls of the capillary tube, which rises against the gravity. The liquid rises due to the adhesion, cohesion and surface tension it experiences due to the contact with the tube surface.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The reaction of Zinc with dilute and concentrated nitric class 12 chemistry JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A vector of 10N makes an angle of 30circ with positive class 11 physics JEE_Main