Answer
Verified
105.9k+ views
Hint: Use the continuity equation given below and substitute the condition of the cylindrical pipe, area and the velocity before and the after changing the diameter of the pipe. Simplifying the substitution provides the value of the velocity of the pipe.
Formula used:
The continuity equation is given by
${A_1}{v_1} = {A_2}{v_2}$
Where ${A_1}$ is the cross sectional area of the first cylinder considered, ${v_1}$ is the velocity of the water through pipe, ${A_2}$ is the cross sectional area of the pipe after changing the diameter of the pipe and ${v_2}$ is the velocity of the pipe after changing the diameter.
Complete step by step solution:
It is given that the
Cross sectional area of the cylindrical pipe, \[A = 0.09\pi \,{m^2}\]
The speed of the water which flows through the cylindrical pipe, $v = 1.0\,m{s^{ - 1}}$
Let us consider the continuity equation,
${A_1}{v_1} = {A_2}{v_2}$
By substituting the known values in the above equation,
The area of the second condition after the diameter gets halved, $A = \dfrac{A}{{{2^2}}}$
$\Rightarrow$ ${A_2} = \dfrac{{0.09}}{4}$
$\Rightarrow$ $0.09\pi \left( 1 \right) = \dfrac{1}{4} \times 0.09\pi \times {V_2}$
By simplifying the above equation, we get
$\Rightarrow$ ${v_2} = 4\,m{s^{ - 1}}$
Hence the velocity of the water flowing through the cylindrical pipe, after making the half of the diameter it changes to $4\,m{s^{ - 1}}$.
Note: The continuity equation holds for the conservation of the mass in the steady state one dimensional flow. The mass of the system before is equal to the mass of the system after the process. This equation is only possible for the flow of fluid.
Formula used:
The continuity equation is given by
${A_1}{v_1} = {A_2}{v_2}$
Where ${A_1}$ is the cross sectional area of the first cylinder considered, ${v_1}$ is the velocity of the water through pipe, ${A_2}$ is the cross sectional area of the pipe after changing the diameter of the pipe and ${v_2}$ is the velocity of the pipe after changing the diameter.
Complete step by step solution:
It is given that the
Cross sectional area of the cylindrical pipe, \[A = 0.09\pi \,{m^2}\]
The speed of the water which flows through the cylindrical pipe, $v = 1.0\,m{s^{ - 1}}$
Let us consider the continuity equation,
${A_1}{v_1} = {A_2}{v_2}$
By substituting the known values in the above equation,
The area of the second condition after the diameter gets halved, $A = \dfrac{A}{{{2^2}}}$
$\Rightarrow$ ${A_2} = \dfrac{{0.09}}{4}$
$\Rightarrow$ $0.09\pi \left( 1 \right) = \dfrac{1}{4} \times 0.09\pi \times {V_2}$
By simplifying the above equation, we get
$\Rightarrow$ ${v_2} = 4\,m{s^{ - 1}}$
Hence the velocity of the water flowing through the cylindrical pipe, after making the half of the diameter it changes to $4\,m{s^{ - 1}}$.
Note: The continuity equation holds for the conservation of the mass in the steady state one dimensional flow. The mass of the system before is equal to the mass of the system after the process. This equation is only possible for the flow of fluid.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main