Answer
Verified
85.2k+ views
Hint: Van't Hoff factor i, determines the extent of association or dissociation, which can lead to the abnormal molar mass of a substance.
Complete step-by-step answer:
Van't Hoff equation: This equation gives the variation of the equilibrium constant of a reaction with temperature.
As we know that,
${ dlnK }_{ p }{ \div dT=-\Delta H }^{ - }{ \div R }{ T }^{ 2 }$
${ dlnK }_{ p }{ ={ \Delta H }^{ - } }{ \div R1/T^{ 2 } }{ \times dT }$
where, ${ K }_{ p }$ = Equilibrium constant
R = Ideal gas constant
T = temperature
${ \Delta H }$ = standard enthalpy change
Integrating both the sides, we get
$\int { dlnK_{ p } } { =\Delta H }^{ - }{ \div R }\int { 1\div { T }^{ 2 } } { .dT }
{ [lnK }_{ p }{ ] }_{ K_{ 1 } }^{ K_{ 2 } }{ =\Delta H^{ - } }{ \div R[1/T]_{ T_{ 1 } }^{ T_{ 2 } } }$
${ ln }_{ e }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ [1\div T }_{ 1 }{ -1/T }_{ 2 }{ ] }$
Now, convert ${ ln }_{ e }$ to ${ log }_{ 10 }$ by multiplying it with 2.303,we get
${ 2.303log }_{ 10 }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ \div R[{ T }_{ 2 }{ -T }_{ 1 } }{ /T }_{ 1 }{ T }_{ 2 }{ ] }$
Rearranging the values, we get
${ log }_{ 10 }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ \div R2.303[{ T }_{ 2 }{ -T }_{ 1 } }{ /T }_{ 1 }{ T }_{ 2 }{ ] }$
${ logK }_{ 2 }{ \div K }_{ 1 }{ =\Delta H\div 2.303[1\div T }_{ 2 }{ -1\div T }_{ 1 }{ ] }$
Hence, the correct option is B.
Additional Information:
The van 't Hoff equation also known as the Vukancic-Vukovic equation in chemical thermodynamics relates the change in temperature T to the change in the equilibrium constant K, given the standard enthalpy change ${ \Delta H }^{ \circ }$ for the process.
The van 't Hoff factor is a measure of the effect of a solute on colligative properties such as:
(I) Osmotic pressure,
(II) Relative lowering in vapor pressure,
(III) Elevation of boiling point and
(IV) Freezing point depression.
For substances which do not completely ionize in water for those substances, it is not an integer.
Compounds that completely ionize into solution, cations, and anions formed attract each other and form aggregates in concentrated solutions. ex- NaCl ionizes to ${ Na }^{ + }$ and ${ Cl }^{ - }$ , at high concentrations of NaCl , its ions forms aggregates in solution, therefore i value is less than 2 in such case, ${ 1 < i < 2 }$,
To increase the value of i we take a dilute solution. For dilute solutions aggregations between cations and anions is less ${ i = 2 }$.
In some cases, the substance added in the solvent forms self-aggregation, in that case also i < 1 as the number of moles dissolved in the solvent becomes less than the number of moles added due to self-association.
Note: The possibility to make a mistake is that you may choose option A. But there will be positive signs instead of negative signs as we when we integrate it will resolve.
Complete step-by-step answer:
Van't Hoff equation: This equation gives the variation of the equilibrium constant of a reaction with temperature.
As we know that,
${ dlnK }_{ p }{ \div dT=-\Delta H }^{ - }{ \div R }{ T }^{ 2 }$
${ dlnK }_{ p }{ ={ \Delta H }^{ - } }{ \div R1/T^{ 2 } }{ \times dT }$
where, ${ K }_{ p }$ = Equilibrium constant
R = Ideal gas constant
T = temperature
${ \Delta H }$ = standard enthalpy change
Integrating both the sides, we get
$\int { dlnK_{ p } } { =\Delta H }^{ - }{ \div R }\int { 1\div { T }^{ 2 } } { .dT }
{ [lnK }_{ p }{ ] }_{ K_{ 1 } }^{ K_{ 2 } }{ =\Delta H^{ - } }{ \div R[1/T]_{ T_{ 1 } }^{ T_{ 2 } } }$
${ ln }_{ e }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ [1\div T }_{ 1 }{ -1/T }_{ 2 }{ ] }$
Now, convert ${ ln }_{ e }$ to ${ log }_{ 10 }$ by multiplying it with 2.303,we get
${ 2.303log }_{ 10 }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ \div R[{ T }_{ 2 }{ -T }_{ 1 } }{ /T }_{ 1 }{ T }_{ 2 }{ ] }$
Rearranging the values, we get
${ log }_{ 10 }\dfrac { K_{ 2 } }{ K_{ 1 } } { \Delta H }^{ - }{ \div R2.303[{ T }_{ 2 }{ -T }_{ 1 } }{ /T }_{ 1 }{ T }_{ 2 }{ ] }$
${ logK }_{ 2 }{ \div K }_{ 1 }{ =\Delta H\div 2.303[1\div T }_{ 2 }{ -1\div T }_{ 1 }{ ] }$
Hence, the correct option is B.
Additional Information:
The van 't Hoff equation also known as the Vukancic-Vukovic equation in chemical thermodynamics relates the change in temperature T to the change in the equilibrium constant K, given the standard enthalpy change ${ \Delta H }^{ \circ }$ for the process.
The van 't Hoff factor is a measure of the effect of a solute on colligative properties such as:
(I) Osmotic pressure,
(II) Relative lowering in vapor pressure,
(III) Elevation of boiling point and
(IV) Freezing point depression.
For substances which do not completely ionize in water for those substances, it is not an integer.
Compounds that completely ionize into solution, cations, and anions formed attract each other and form aggregates in concentrated solutions. ex- NaCl ionizes to ${ Na }^{ + }$ and ${ Cl }^{ - }$ , at high concentrations of NaCl , its ions forms aggregates in solution, therefore i value is less than 2 in such case, ${ 1 < i < 2 }$,
To increase the value of i we take a dilute solution. For dilute solutions aggregations between cations and anions is less ${ i = 2 }$.
In some cases, the substance added in the solvent forms self-aggregation, in that case also i < 1 as the number of moles dissolved in the solvent becomes less than the number of moles added due to self-association.
Note: The possibility to make a mistake is that you may choose option A. But there will be positive signs instead of negative signs as we when we integrate it will resolve.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
A horizontal force F mg3 is applied on the upper surface class 11 physics JEE_MAIN
A shaft rotating at 3000 rpm is transmitting power class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Two blocks are in contact on a frictionless table One class 11 physics JEE_Main
Density of carbon monoxide is maximum at A 05 atm and class 11 chemistry JEE_Main
A block of mass 5 kg is on a rough horizontal surface class 11 physics JEE_Main